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ABSTRACT 
Building an XML store means finding solutions to the problems 
of representing, accessing, querying and updating XML data. The 
irregularity of both the structure and usage of XML, is, however, a 
big obstacle in achieving good performance. Relational Database 
Systems rely on a fixed-schema of records to represent and 
manage data, but XML data, irregular in structure and content, 
does not seem to allow this approach. This paper describes how 
the notion of database record has been extended and applied to 
XML storage and how the resulted store abstracts the structure of 
the XML data from the actual storage format. Furthermore, we 
argue that an adaptive (lazy) XML store and partial indexing are 
the key points in achieving good performance facing the range of 
different XML usage patterns. This allows for automatic, 
application-specific tuning, facing the range of challenges 
imposed by the current XML applications. 
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1. INTRODUCTION 
XML has a prominent role in current industry and research, either 
as a generic way to represent data or as a format for data 
integration and application interoperability. XML applications 
require, from this point of view, the capability to store, retrieve 
and query XML data. In order to face this range of challenges, 
XML research has focused on multiple angles of XML storage. 
The necessity to assign identifiers to nodes in an XML document, 
brought a variety of identifier and indexing schemes for XML 
[16],[9],[17] Related to this approach are works which try to map 
the existing relational database systems to the challenges of 
XML[8][19] Recently, new challenges have been posed by 
XQuery[2], the standard language for querying XML. XQuery is 
defined over the very generic XQuery Data Model and raises 
issues such as efficient query evaluation, efficient access and 
retrieval of XML data and maintainment of document order. 
Query evaluation and optimization[16][1] have their share of 
research work, such as [15],[9] to list ones relevant to our work. 
Concurrency and locking protocols for XML also raise specific 

problems[[12][13]. The focus switches, therefore, from 
optimizing queries, reads and access (index structures and 
identifier schemes), to optimizing XML updates - issues which are 
rarely be addressed together. A common solution is the 
simplification of the requirements (such as reducing the XQuery 
language to substets) in order to allow allows better results when 
different techniques are combined. These choices can be 
restrictive for the application. As an example, good identifier 
schemes that are well supported by index schemes in a relational 
database [9], help evaluating XPath[5] expressions (restricted part 
of XQuery) based on containment, but show poor performance for 
updates.  

What existing approaches lack is a uniform way of representing 
and thinking of XML; furthermore, they focus on one aspect of 
XML storage, and assume that the application will adapt to a 
particular usage pattern. Even the more flexible approaches which 
abstract away the underlying data model and choices made while 
developing the store, offer little place to real adaptation to the 
application (e.g., defining a threshold parameter of this notable 
work [15], requires a lot of knowledge of the underlying storage 
pattern). Another issue which affects existing approaches is that 
they function as all-or-nothing as what regards indexing: the 
previous example of the identifier scheme is a typical one, where 
advantages gained by knowing all node information is lost in poor 
performance updates. The conclusion is, one cannot achieve 
everything at once, but should focus on what it can achieve at a 
given moment, in a given usage context. Some existing 
approaches took the first partial approaches to doing that: either 
restricted at a special scenario such as query evaluation [4][19] or 
even more generic, closer to our work: [11][12] 

In our opinion, the desiderata for an XML store has at its center 
the possibility to abstract away the actual XML model of the 
application, and to give enough room for determining the best 
way to store depending on the application usage pattern. The 
keywords are: adaptivity, laziness and partial. Baring this in mind, 
our contribution is the use of a flat representation - an XML 
instance is a sequence of Ranges: logical units similar to tuples in 
relational databases, whose size and existence is defined by the 
application usage pattern (inserts/deletes, etc.). This unit is 
supported by the choice of our XML representation, and opens the 
way to a lazy approach to storing, accessing and indexing XML 
data. Ranges replace a tree model with a flat one, and offer 
enough flexibility to have application-dependent indexing units, 
while still allowing for more granular indexing, if needed. 
Additional issues such as identifier schemes are, therefore, 
orthogonal to this model. 

The well-known results to the problems of storing, accessing, 
querying, and updating data in relational database systems 
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(RDBMS) seem to have no direct applicability when facing the 
irregularity of XML Data. The intrinsic tree model of XML is not 
compatible to the flat model of tuples complying with a well-
defined schema, stored in the pages of the RDBMS. Successful 
stories found a niche in defining appropriate index structures and 
identifier schemes that have a straightforward mapping to a 
relational data model [16][9][19]. Querying XML data using the 
previously defined index structures maps better to the set-oriented 
relational data model[19][1] In order to address the actual storage 
issues, native[14] XML store implementations [15] find an 
extension of the relational data model by arguing that tree 
structures and tree-based keys are a natural extension of the 
relational model to the XML world.  

This paper is structured as follows: Section 2 formally defines our 
requirements for an XML store and Section 3 motivates our 
choice for XML Representation. The partial, lazy approach we 
take to indexing is discussed in Sections 4 and 5. Identifier 
schemes are briefly taken into consideration in Section 6, and 
shown to be orthogonal to the main storage model. Section 7 
presents experimental results. After a discussion of related work 
in Section 8, conclusions and future work constitute the core of 
Section 9. 

2. XML STORE DESIDERATA 
In the context of the previous section, we derived the following 
list of requirements: 

1. Store and access any instances of the  XQuery DataModel 
2. Support for XUpdate 
3. Allow optimization of reads and/or updates.    
4. Indexes 

5. Support different Node Identifier schemes. In particular, 
support for stable and comparable identifiers should be 
offered. 

6. Low storage overhead. 
7. Support  PSVI. 

The XQuery Data Model[2] supports a wide range of XML 
applications (either read-oriented, or heavy-update scenarios), and 
support for XQuery itself is a must for a standard-compliant XML 
store. PSVI should be supported in order to avoid repeated 
evaluation of XML schema. Low storage overhead incurs by 
minimizing the quantity of data actually stored. In our approach 
we do not store all node identifiers, but store enough information 
to allow us regenerate them. See Section 6 for more details on 
Identifiers. The index structures are discussed in Sections 4 and 5.  

The Store should support read operations (entire data source, but  
also a single node), and update operations (XUpdate) as described 
in Table 1. XUpdate operations specify a node and allow 
insertions of the data  relative to this node (as previous siblings, 
next sibling, first child or last child of the node). 

Table 1: Interface of the store. 

insertBefore(id, …) 
insertAfter(id, …) 
insertIntoFirst(id, …) 
insetIntoLast(id, …) 

read() 
read(id):… 
deleteNode(id) 
replaceNode(id, …) 
replaceContent(id, …) 

 

Node identifiers are assigned, according to the XQuery 
DataModel to each node in the data instance. In particular, 
executing an XUpdate operation involves more steps: locating the 
target ID, identifying the insert position (e.g., as previous sibling, 
as next sibling, as first child, as last child), and performing the 
actual update. 

2.1 Optimizing Reads vs. Optimizing Updates 
Typical storage systems are faced with challenges of optimizing 
read operations or update operations, as required by the 
application. A store that achieves both optimally is a utopia since 
the structures required to support the first type of operation (fast 
indexes) negatively influence the performance of the other. In this 
work we take a middle approach, and try to optimize one or the 
other depending on the application load. Adaptivity, flexibility 
and laziness are another main desiderata expressed by our 
requirements. 

The following sections argument how these requirements have 
been fulfilled in the particular case of our XML store. The 
important choices are: the XML representation, the definition of 
an arbitrarily granular unit Range, and the flexible index 
structures based on the existence of this unit. 

3. XML REPRESENTATION 
3.1 Choosing an XML Representation 
Current research on XML takes one of few alternatives to 
represent and store XML data. XML data is either shredded on a 
relational database [8][19][10], special index structures, or a 
combination of the two [15]. There is usually a strong relationship 
between storing and representing XML on one side, and indexing 
and querying it on the other side and current approaches do not 
conceptually separate them. Usual approaches provide neither the 
data independence, nor the flexible granularity that make up our 
adaptivity requirement.  

3.2 A Flexible Representation: Sequence of 
Tokens 
In order to achieve our goal, we have chosen a representation 
which is able to express anything between very granular and very 
coarse instances of the Xquery Data Model. We use a 
representation derived from a pull-based XQuery parser and 
engine, already described in literature[7]. We will accordingly use 
the notion of Token to denote each part of the XQuery Data 
Model, as defined in this representation.  

Tokens can be defined as a materialization of enriched SAX 
events. The model is richer than usual SAX events (or event-
based parsing models), as it defines units that do not exist on the 
SAX model (attributes separated from their element, and given 
corresponding begin and end tokens) [7].  

<ticket>       
  <hour> 
        15 
  </hour> 
      
  <name> 
      Paul 
  </name> 
</ticket> 

[BEGIN_ELEMENT [ID: 1] [ticket] 
[BEGIN_ELEMENT [ID: 2] [hour] 
[TEXT_TOKEN     ID: 3   15] 
[END_ELEMENT] 
 
[BEGIN_ELEMENT [ID:4] [name] 
[TEXT_TOKEN     ID:5   Paul] 
[END_ELEMENT] 
[END_ELEMENT] 

Figure 1: Sample XML document and corresponding Tokens 



Figure 1 presents the tokens corresponding to a sample XML 
document.. In particular, Nodes in the XQuery Data Model, who 
must have an associated identifier, are also represented by a 
sequence of tokens. Here, in particular, the first one holds the 
identifier. A nested node is represented by a sequence of tokens 
starting with a Begin token, containing the Id, and an End token 
[7]. 

This particular representation of the XQuery Data Model offers us 
the following properties, which make it suitable for our goals:  

1. Complete representation of the XQuery Data model 

2. Independence of the API used in the actual application 
(flat model, as opposed to tree-based or event-based 
representation) 

3. Alows flexible data granularity: the token is the most 
granular unit 

4. PSVI :  Post schema validation infoset [7] 

Our representation is based therefore on the following fact: a 
token is the most granular unit (even more granular than an XML 
element); tokens can be grouped in more specific units 
(nodes/elements are a group of tokens). Other representations, in 
particular tree-based ones [15], do not provide this level of 
flexibility and are not extensible to the detail of the complete 
XQuery Data Model. PSVI fulfills one of our requirements since a 
token sequence (and, in particular, each XML Token) can also be 
associated to the XML schema type derived after a schema 
validation. 

The aforementioned level of granularity allows a store 
implementation to use serialized tokens as the representation of 
the XML data. An XML data instance is represented by the full 
sequence of stored tokens. 

3.3 The Storage Model 
The storage model of the XML data in this store consists of token 
sequences serialized in sequential blocks/pages, in document 
order, as described in Figure 2. Each time data is inserted in the 
store, the corresponding tokens are generated and store in the 
corresponding positions in the storage: blocks are allocated 
accordingly. Tokens offer, therefore, a flat representation of the 
XML data, independent of the actual data model of the application 
that uses the store (such as DOM, SAX, etc.). Node Ids, requested 
in the XQuery Data Model, are also generated at insert time. We 
adopt the approach of stable identifiers, generated to all begin 
tokens of nodes, at insert time. 

 

Figure 2: An XML Data instance is represented by a sequence 
of tokens 

4. IMPLEMENTING DATABASE 
RECORDS FOR XML 
4.1 Discarding the Option of a Full Index 
As described in previous sections, the interface to the store 
defines read, insert and update operations. Since all operations are 
defined relative to a target node Identifier, it is nodes 
corresponding to these identifiers that need to be quickly located 
during the update.  

Section 1 described existing approaches to XML data storage 
[1][16] that take the options of full data indexing - the purpose is 
to optimize queries and accelerate access to specific parts of XML 
data. We argue that this is not a valid choice: updates are too 
expensive in this way. 

The advantages of a full index are the ability to quickly locates 
nodes. However, a full index has two main disadvantages: (a) 
inserts are expensive, and (b) storage requirements are very high. 
Besides the fact that the index grows in size for data-intensive 
applications, the vast majority of the entries will not even be used. 
This approach is in the way of fast updates. 

A typical usage pattern will access the data based on semantic 
constraints, such as: insert a <purchase-order> element as the last 
child of the root (a <purchase-orders> element). Performing this 
operation means getting access to the root node and the position 
corresponding to its last child. The vast majority of other index 
entries, if this operation is repeated, will not be used. We also 
prove experimentally (see Section 8) a full index induces a big 
overhead: updates are more expensive. The lazy indexed 
introduces are the answer to this problem. 

4.2 The Notion of Range 
We define the notion of Range as a sequence of tokens. In the idea 
that a full node index cannot accommodate the entire application 
usage patterns, we introduce the Range as a less granular unit. 

Our store defines the range as an insert unit: by populating an 
XML DataSource with tokens corresponding to a node we create a 
first range (the initial content). A successive insert of a new child, 
define a new range, while the existing range is split in two. The 
choice of the representation (tokens), as presented in Section 3, 
has a crucial role in making the notion of Range possible: each 
sequence of tokens can constitute a range. The real choice is made 
by the application itself. 

We can draw an analogy between the implementation of relational 
database systems, where a Record is as a sequence of variable-
sized fields and our model, where a Range is a sequence of 
variable-sized tokens. What we add in the XML approach is that a 
Range is defined by the usage pattern of the application, and not 
by a fixed schema. In our model, we must also maintain an order 
between Ranges in order to preserve document order of tokens. 
Ranges, as also described in the previous section, are the way to 
obtain cheap updates.   

4.3 The Range Index (Coarse-grained index) 
The role of an index is to quickly locate a position in the store. 
The range index is to locate the range corresponding to an ID 
specified in an update operation. Ranges represent insert units – as 
opposed to a full index, which would have contained all Ids 
individually. The range index contains less entries, but it is also 
fuzzier (i.e., it refers to an interval of  Identifiers instead of to a 
single one). The Storage level is able to retrieve a range, given its 
Id. 

A consequence of this way to represent data is that Node 
Identifiers need not be stored together with the tokens they refer 
to. By knowing the start identifier of a Range and by successively 
reading successive the tokens of that range, identifiers can be 
generated and re-associated to the tokens they belong to. The 
advantage is better space utilization (low storage overhead), a 
valuable resource in case of variable-length IDs. Section  



4.4 The Storage Model (revised)  
Based on the existence of Ranges as the logical storage unit, the 
Storage level comprises chained blocks, which, at their turn, 
contain ordered ranges. Document order is preserved through the 
chaining of blocks and through the ordering of ranges inside 
blocks. (see Figure 3).  

 
Figure 3: The XML Data Instance as a sequence of ranges, 
and the Range Index 
 

4.5 Functionality of the Range Index 
This section presents a simple usage scenario of ranges in the 
store. We assume that we have on an initially empty Data Source.  
The operations which are performed are: 
1. Insert 2 sibling Nodes (contain 100 nodes in total) 

2. Insert a child (40 nodes) as the last child of the node which is 
identified by 60: insertIntoLast(60,<<new data>>)  

The effects on the Store are that tokens are created for the inserted 
data, and they are stored sequentially on the pages. Node Ids are 
created, but only the ranges are inserted in the Range Index.  

The detailed description of the effects of  each step on the Range 
Index are described below: 

1. Allocate 100 identifiers for the inserted nodes, and create  
range 1 with Ids 1-100. Range 1 is stored in  Block 1.  

2. Insertion of the child : 

a. Locate second node using the Range index (id 60 is 
in range 1) 

b. Locate range and offset of the end token of the 
node with the Id 60.  

c. Split range number 1 in two (create range 3) 

d. Create a new range corresponding to the inserted 
data (2), and allocate 40 unique identifiers 

e. Store the new range (Block 1) and insert the split 
range in the storage. (Blocks 2). 

Table 2. Range Index (Coarse index) with an initial range. 

RangeId BlockId StartId EndId 

1 1 1 100 
 

Table 3. The Range Index (Coarse index) after an insert 
(nodes 101-140, range 2) and split of range 1.  

RangeId BlockId StartId EndId 

1 1 1 70 

2 1 101 140 

3 2 71 100 
 

Tables 2 and 3 describe the configuration of the Range Index 
during inserts. 

5. THE LAZY/PARTIAL INDEX 
The notion of Range and that of Range Index allow us to optimize 
update operations: fewer entries are inserted to the range index - a 
big step forward in comparison to the full index approach. 

The price to pay for having cheap updates is that reads become 
more expensive. Since the nodes cannot, in general, be accessed 
directly anymore (they are ‘hidden’ insider a certain range), 
additional lookups need to be performed. A full index would have 
been able to directly access each node. The full index has an 
advantage of quick lookups, but it is unacceptable because of two 
things: the high memory overhead and expensive update 
operations. 

The solution to this problem is a Partial Index[18]: using the  
advantages of the full index, but only when needed. The result of 
lookup operations, performed during updates is inserted in the 
partial index: either the range of a token, the offset of a token 
inside its range, the location (range, offset) of the end token of the 
node (i.e. node token) inside the range and the position of the end 
token of the node inside. With the help of this additional structure, 
a repeated search for the same logical position will benefit from 
the existence of this value in the partial index (“jump“ to the end 
of the given node).  

The partial index stores, therefore, information on the individual 
nodes: their exact ranges and offset inside the range (for 
simplicity, the example in Table 3 only describes the existence of 
the range of a token). Because this very granular functionality is 
the one which we try to avoid from traditional approaches, the 
partial index is actually a combination between a real index (such 
as those defined by other identifier schemes) and a cache. The 
combination between the Range Index and the Partial Index (see 
Figure 4) achieves the goal of being, adaptive, flexible and lazy in 
the XML world. This can be done by not trying to index 
everything, but only if and when needed.  

 
Figure 4: Partial Index entries enrich the coarse Range Index 
 
 Referring to the example from Section 4.5, the partial index 
(considered empty at the beginning), would be  used as follows: 

1. Inserting on an empty data source does not create entries in 
the Partial Index 

2. Inserting a new node:  

a. Locating node with Id 60 using the range index in 
range 1: a new entry is inserted in the partial index 
to idicate the range. 

b. Locating the end token of the id 60. This means 
that after the insert, the location of the end token is 
the range 3: a new entry is inserted in the partial 
index.to indicate the range (see Table 4). 



Table 4: The Partial Index (Granular) after the second insert: 
lookup positions have been memorized 

 

 

 

6. ORTHOGONALITY OF ID SCHEMES 
As mentioned in the introduction, proposals for indexing and 
identifier schemes for XML constitute a large part of the existing 
research on XML [16][19][6][19]. Indexing XML data relies 
heavily on the fact that nodes in an XML document are assigned 
an identifier. In particular, update operations are expressed based 
on these identifiers and indexes can be build on top of them. The 
XQuery Data Model, which we implement, requires document 
order in the XML representation and unique identity of Nodes 
inside this representation. We use Node Is, generated at insert 
time, and we obtain document order by chaining blocks and 
maintaining order of Ranges inside blocks. 

As opposed to previous approaches, our model provides a 
separation from the API of the application: a range can span over 
several nodes, or over parts of a node (represented as a sequence 
of tokens). Ids of nodes are, currently, orthogonal to our way of 
indexing.  

6.1 Low Storage Overhead 
The Range Index is a coarse-grained index (see Section 4). This 
already means lower storage overhead over a full index approach. 
Beside its role of locating a Range in the storage, the Range Index 
uses properties of Ids for locating the range of a node with the 
given id. This  functionality can be described as follows:  

rangeIndexLocate : { ID } -> { R }  

where {ID} is the set of Node identifiers in the store, and {R} is 
the set of all ranges in the Range Index. Currently, we achieve this 
by maintaining information on each [startId, endId] interval of 
the ids inside a Range. Since a Range is defined as a sequence of 
tokens in document order, we can obtain further decrease storage 
overhead by only storing the Identifiers of the first node inside a 
range. The Id schemes with this property generate the Id of the 
next token ID using a simple factory function:  

idFactory : {ID} X {token} -> {ID} 

Many existing identifier schemes are compatible to our current 
approach, because they have the previous property. [19][17]. 

6.2 Stable and Comparable Identifiers 
Stable identifiers are the way to build indexes on the store: such 
an index can be external and based on logical node identifiers.  
Currently, stable identifiers can be obtained by assigning unique 
integer number to nodes at insert times This simple approach 
allows us to define actual ranges of Ids (in the example of Table: 
1-70, 101-1). The Ids inside ranges are comparable Ids inside 
ranges. We can obtain a semi-stable document order at read time 
(since tokens are stored in document order and read sequentially). 
The combination of order between ranges and order of ranges in 
the storage, can also be put in connection to partially-stable 
identifier schemes, such as those described in [19]. 

Ids which are both stable and fully comparable in the document 
order, can currently only be obtained by using a different 

identifier scheme (in particular [17]).  Further details are omitted 
for lack of space. 

7. EXPERIMENTAL RESULTS 
The following micro benchmarks reflect the effects of using a 
coarse index and a partial index, as opposed to a full index, in our 
representation. The identifier scheme associates unique integer 
values to each node, at insert time. However, only ranges become 
entries in the index. A memory-based partial index lazily adds 
information on the location of tokens inside ranges (begin and end 
token). 

Experimental setup: our first implementation is built completely 
on top of a relational database system. We use Java and JDBC to 
define express the operations of the interface of the store. The test 
platform was a Pentium 4 2,8Ghz/512MB RAM, running SuSe 
Linux9.0, and using a MySQL as a database.  

The parameters that influence the results of the benchmark are the 
size and number of ranges. A coarse-grained index means low 
update overhead but a larger overhead at read and lookup times. 
On the other side, an index containing many entries (even coarse-
grained) also leads to performance decrease at insert time. The 
partial index improves reads especially in the case of more 
coarse-granular range sizes, as it builds entries lazily (cache-like).  
The experiments involve the following micro benchmarks: Inserts, 
sequential reads, and random reads of small pieces of data in the 
presence of a full index, range index, and, respectively the 
combination of range index + partial index (see Table 5). The 
metric is  kilobytes/second (read speed, relative to data size). 
Table 5: Experimental results: Lazy indexing in XML storage 

Indexing approach Insert   
(kb/s) 

Seq.scan 
(kb/s) 

Random 
reads (kb/s) 

Full Index 
(max.granularity) 27,91 1298,59 672,22 

Range Index              
(many, granular entries) 97,07 1333,47 136,98 

Range Index                  
(few, coarse, large entries) 91,03 1333,47 33,41 

Range Index                 
(few, coarse, large entries) 
+ Partial Index (memory) 

182,32 1333,47 994,36 

 
The results reflect the expected behavior: the Range Index clearly 
brings advantages in what regards update speed: less entries are 
entered the index. As the number of entries increases, however, 
even with smaller data quantity, the advantages diminish (many, 
granular entries). The Partial Index helps to achieve cheaper reads 
and lookups (especially when the range index is coarse). We are 
considering more optimizations of the read/update/storage 
overhead. 

8. RELATED WORK 
Our work bears close resemblance to existing native XML storage 
research[12][11]. Even though the flexible granularity is taken 
into consideration by the authors, the tree model of the XML data 
is not abstracted away but is used to define, in a similar approach, 
partial indexes. Other similarities to this independent research 
involve sequentially storing the XML data, but the notion of 

NodeID Begin Token End Token 

60 (Range) 1 (Range) 3 



variable-size range and varying granularity are not entirely 
contained in the proposed approach: element node (i.e., fine-
grained units) are still the storage unit in this approach. The 
hybrid approach taken by Natix[15] and its tree-based model also 
brings ideas in the field of granularity of records, but it relies on a 
tree model. Logic identifiers have not been extensively studied in 
this research. A special mention deserves a project[3] which, 
under the umbrella of enhancing existing identifier schemes based 
on containment join-based algorithms for evaluation of XPath 
expressions, defines the notion of ‘segment’ (similar to a range), 
as a group of elements which are treated as a single insert 
operation, instead of separate ones. The experiments study the 
effect of this coarse-granular unit, especially as the segments 
increase in number. Their performance is degraded because of the 
eager approach to indexing the content of the segment (group of 
elements) define lazily. Other approaches try to take adaptive and 
laziness in XML processing, but in the field on queries and path 
evaluation[4]. 

9. CONCLUSIONS AND FUTURE WORK 
This paper described a data representation and model of an XML 
store, inspired by the notion of records in relational databases. The 
immediate advantages are independence of our data format from 
the API used by the XML application, and the possibility to adapt 
to the application pattern. The store achieves this by lazily 
creating its storage and index structures and optimizes for reads or 
updates according to the how the application focuses on one or the 
other. The process is transparent to the application. 

Our approach to XML Storage involves an exploration of a 
number of design options. We are currently evaluating 
experimentally the effects of variable-sized ranges as logical unit 
for XML data representation. The effect of functionality of the 
partial index is also to be taken into account. Structural properties 
of the actual elements of the XQuery DataModel, such as 
hierarchical or sibling relationships can also be maintained by the 
Partial Index.  

Another aspect to explore, not addressed here, is concurrency. The 
flat model proposed in this paper allows the definition of these 
concepts on a three-layer architecture: blocks, ranges and tokens. 
Again, the principles of storage already defined in the context by 
relational database systems, have an immediate application here. 
The issue that differs from the relational world is the necessity to 
always maintain the order between ranges. This is ongoing work. 
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