
Adaptive XML Storage
or The Importance of Being Lazy

Cristian Duda
ETH Zurich

Institute for Information Systems
8092 Zurich, Switzerland
cristian.duda@inf.ethz.ch

Donald Kossmann
ETH Zurich

Institute for Information Systems
8092 Zurich, Switzerland

donald.kossmann@inf.ethz.ch

ABSTRACT
Building an XML store means finding solutions to the problems
of representing, accessing, querying and updating XML data. The
irregularity of both the structure and usage of XML, is, however, a
big obstacle in achieving good performance. Relational Database
Systems rely on a fixed-schema of records to represent and
manage data, but XML data, irregular in structure and content,
does not seem to allow this approach. This paper describes how
the notion of database record has been extended and applied to
XML storage and how the resulted store abstracts the structure of
the XML data from the actual storage format. Furthermore, we
argue that an adaptive (lazy) XML store and partial indexing are
the key points in achieving good performance facing the range of
different XML usage patterns. This allows for automatic,
application-specific tuning, facing the range of challenges
imposed by the current XML applications.

Keywords
XML, XML Storage, XML Indexing, Partial Indexing, Lazy
Indexing, Adaptivity, Laziness, Granularity.

1. INTRODUCTION
XML has a prominent role in current industry and research, either
as a generic way to represent data or as a format for data
integration and application interoperability. XML applications
require, from this point of view, the capability to store, retrieve
and query XML data. In order to face this range of challenges,
XML research has focused on multiple angles of XML storage.
The necessity to assign identifiers to nodes in an XML document,
brought a variety of identifier and indexing schemes for XML
[16],[9],[17] Related to this approach are works which try to map
the existing relational database systems to the challenges of
XML[8][19] Recently, new challenges have been posed by
XQuery[2], the standard language for querying XML. XQuery is
defined over the very generic XQuery Data Model and raises
issues such as efficient query evaluation, efficient access and
retrieval of XML data and maintainment of document order.
Query evaluation and optimization[16][1] have their share of
research work, such as [15],[9] to list ones relevant to our work.
Concurrency and locking protocols for XML also raise specific

problems[[12][13]. The focus switches, therefore, from
optimizing queries, reads and access (index structures and
identifier schemes), to optimizing XML updates - issues which are
rarely be addressed together. A common solution is the
simplification of the requirements (such as reducing the XQuery
language to substets) in order to allow allows better results when
different techniques are combined. These choices can be
restrictive for the application. As an example, good identifier
schemes that are well supported by index schemes in a relational
database [9], help evaluating XPath[5] expressions (restricted part
of XQuery) based on containment, but show poor performance for
updates.

What existing approaches lack is a uniform way of representing
and thinking of XML; furthermore, they focus on one aspect of
XML storage, and assume that the application will adapt to a
particular usage pattern. Even the more flexible approaches which
abstract away the underlying data model and choices made while
developing the store, offer little place to real adaptation to the
application (e.g., defining a threshold parameter of this notable
work [15], requires a lot of knowledge of the underlying storage
pattern). Another issue which affects existing approaches is that
they function as all-or-nothing as what regards indexing: the
previous example of the identifier scheme is a typical one, where
advantages gained by knowing all node information is lost in poor
performance updates. The conclusion is, one cannot achieve
everything at once, but should focus on what it can achieve at a
given moment, in a given usage context. Some existing
approaches took the first partial approaches to doing that: either
restricted at a special scenario such as query evaluation [4][19] or
even more generic, closer to our work: [11][12]

In our opinion, the desiderata for an XML store has at its center
the possibility to abstract away the actual XML model of the
application, and to give enough room for determining the best
way to store depending on the application usage pattern. The
keywords are: adaptivity, laziness and partial. Baring this in mind,
our contribution is the use of a flat representation - an XML
instance is a sequence of Ranges: logical units similar to tuples in
relational databases, whose size and existence is defined by the
application usage pattern (inserts/deletes, etc.). This unit is
supported by the choice of our XML representation, and opens the
way to a lazy approach to storing, accessing and indexing XML
data. Ranges replace a tree model with a flat one, and offer
enough flexibility to have application-dependent indexing units,
while still allowing for more granular indexing, if needed.
Additional issues such as identifier schemes are, therefore,
orthogonal to this model.

The well-known results to the problems of storing, accessing,
querying, and updating data in relational database systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’0X, Month X–X, 200X, City, State, Country.
Copyright 200X ACM X-XXXXX-XXX-X/XX/XXXX…$5.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

(RDBMS) seem to have no direct applicability when facing the
irregularity of XML Data. The intrinsic tree model of XML is not
compatible to the flat model of tuples complying with a well-
defined schema, stored in the pages of the RDBMS. Successful
stories found a niche in defining appropriate index structures and
identifier schemes that have a straightforward mapping to a
relational data model [16][9][19]. Querying XML data using the
previously defined index structures maps better to the set-oriented
relational data model[19][1] In order to address the actual storage
issues, native[14] XML store implementations [15] find an
extension of the relational data model by arguing that tree
structures and tree-based keys are a natural extension of the
relational model to the XML world.

This paper is structured as follows: Section 2 formally defines our
requirements for an XML store and Section 3 motivates our
choice for XML Representation. The partial, lazy approach we
take to indexing is discussed in Sections 4 and 5. Identifier
schemes are briefly taken into consideration in Section 6, and
shown to be orthogonal to the main storage model. Section 7
presents experimental results. After a discussion of related work
in Section 8, conclusions and future work constitute the core of
Section 9.

2. XML STORE DESIDERATA
In the context of the previous section, we derived the following
list of requirements:

1. Store and access any instances of the XQuery DataModel
2. Support for XUpdate
3. Allow optimization of reads and/or updates.
4. Indexes

5. Support different Node Identifier schemes. In particular,
support for stable and comparable identifiers should be
offered.

6. Low storage overhead.
7. Support PSVI.

The XQuery Data Model[2] supports a wide range of XML
applications (either read-oriented, or heavy-update scenarios), and
support for XQuery itself is a must for a standard-compliant XML
store. PSVI should be supported in order to avoid repeated
evaluation of XML schema. Low storage overhead incurs by
minimizing the quantity of data actually stored. In our approach
we do not store all node identifiers, but store enough information
to allow us regenerate them. See Section 6 for more details on
Identifiers. The index structures are discussed in Sections 4 and 5.

The Store should support read operations (entire data source, but
also a single node), and update operations (XUpdate) as described
in Table 1. XUpdate operations specify a node and allow
insertions of the data relative to this node (as previous siblings,
next sibling, first child or last child of the node).

Table 1: Interface of the store.

insertBefore(id, …)
insertAfter(id, …)
insertIntoFirst(id, …)
insetIntoLast(id, …)

read()
read(id):…
deleteNode(id)
replaceNode(id, …)
replaceContent(id, …)

Node identifiers are assigned, according to the XQuery
DataModel to each node in the data instance. In particular,
executing an XUpdate operation involves more steps: locating the
target ID, identifying the insert position (e.g., as previous sibling,
as next sibling, as first child, as last child), and performing the
actual update.

2.1 Optimizing Reads vs. Optimizing Updates
Typical storage systems are faced with challenges of optimizing
read operations or update operations, as required by the
application. A store that achieves both optimally is a utopia since
the structures required to support the first type of operation (fast
indexes) negatively influence the performance of the other. In this
work we take a middle approach, and try to optimize one or the
other depending on the application load. Adaptivity, flexibility
and laziness are another main desiderata expressed by our
requirements.

The following sections argument how these requirements have
been fulfilled in the particular case of our XML store. The
important choices are: the XML representation, the definition of
an arbitrarily granular unit Range, and the flexible index
structures based on the existence of this unit.

3. XML REPRESENTATION
3.1 Choosing an XML Representation
Current research on XML takes one of few alternatives to
represent and store XML data. XML data is either shredded on a
relational database [8][19][10], special index structures, or a
combination of the two [15]. There is usually a strong relationship
between storing and representing XML on one side, and indexing
and querying it on the other side and current approaches do not
conceptually separate them. Usual approaches provide neither the
data independence, nor the flexible granularity that make up our
adaptivity requirement.

3.2 A Flexible Representation: Sequence of
Tokens
In order to achieve our goal, we have chosen a representation
which is able to express anything between very granular and very
coarse instances of the Xquery Data Model. We use a
representation derived from a pull-based XQuery parser and
engine, already described in literature[7]. We will accordingly use
the notion of Token to denote each part of the XQuery Data
Model, as defined in this representation.

Tokens can be defined as a materialization of enriched SAX
events. The model is richer than usual SAX events (or event-
based parsing models), as it defines units that do not exist on the
SAX model (attributes separated from their element, and given
corresponding begin and end tokens) [7].

<ticket>
 <hour>
 15
 </hour>

 <name>
 Paul
 </name>
</ticket>

[BEGIN_ELEMENT [ID: 1] [ticket]
[BEGIN_ELEMENT [ID: 2] [hour]
[TEXT_TOKEN ID: 3 15]
[END_ELEMENT]

[BEGIN_ELEMENT [ID:4] [name]
[TEXT_TOKEN ID:5 Paul]
[END_ELEMENT]
[END_ELEMENT]

Figure 1: Sample XML document and corresponding Tokens

Figure 1 presents the tokens corresponding to a sample XML
document.. In particular, Nodes in the XQuery Data Model, who
must have an associated identifier, are also represented by a
sequence of tokens. Here, in particular, the first one holds the
identifier. A nested node is represented by a sequence of tokens
starting with a Begin token, containing the Id, and an End token
[7].

This particular representation of the XQuery Data Model offers us
the following properties, which make it suitable for our goals:

1. Complete representation of the XQuery Data model

2. Independence of the API used in the actual application
(flat model, as opposed to tree-based or event-based
representation)

3. Alows flexible data granularity: the token is the most
granular unit

4. PSVI : Post schema validation infoset [7]

Our representation is based therefore on the following fact: a
token is the most granular unit (even more granular than an XML
element); tokens can be grouped in more specific units
(nodes/elements are a group of tokens). Other representations, in
particular tree-based ones [15], do not provide this level of
flexibility and are not extensible to the detail of the complete
XQuery Data Model. PSVI fulfills one of our requirements since a
token sequence (and, in particular, each XML Token) can also be
associated to the XML schema type derived after a schema
validation.

The aforementioned level of granularity allows a store
implementation to use serialized tokens as the representation of
the XML data. An XML data instance is represented by the full
sequence of stored tokens.

3.3 The Storage Model
The storage model of the XML data in this store consists of token
sequences serialized in sequential blocks/pages, in document
order, as described in Figure 2. Each time data is inserted in the
store, the corresponding tokens are generated and store in the
corresponding positions in the storage: blocks are allocated
accordingly. Tokens offer, therefore, a flat representation of the
XML data, independent of the actual data model of the application
that uses the store (such as DOM, SAX, etc.). Node Ids, requested
in the XQuery Data Model, are also generated at insert time. We
adopt the approach of stable identifiers, generated to all begin
tokens of nodes, at insert time.

Figure 2: An XML Data instance is represented by a sequence
of tokens

4. IMPLEMENTING DATABASE
RECORDS FOR XML
4.1 Discarding the Option of a Full Index
As described in previous sections, the interface to the store
defines read, insert and update operations. Since all operations are
defined relative to a target node Identifier, it is nodes
corresponding to these identifiers that need to be quickly located
during the update.

Section 1 described existing approaches to XML data storage
[1][16] that take the options of full data indexing - the purpose is
to optimize queries and accelerate access to specific parts of XML
data. We argue that this is not a valid choice: updates are too
expensive in this way.

The advantages of a full index are the ability to quickly locates
nodes. However, a full index has two main disadvantages: (a)
inserts are expensive, and (b) storage requirements are very high.
Besides the fact that the index grows in size for data-intensive
applications, the vast majority of the entries will not even be used.
This approach is in the way of fast updates.

A typical usage pattern will access the data based on semantic
constraints, such as: insert a <purchase-order> element as the last
child of the root (a <purchase-orders> element). Performing this
operation means getting access to the root node and the position
corresponding to its last child. The vast majority of other index
entries, if this operation is repeated, will not be used. We also
prove experimentally (see Section 8) a full index induces a big
overhead: updates are more expensive. The lazy indexed
introduces are the answer to this problem.

4.2 The Notion of Range
We define the notion of Range as a sequence of tokens. In the idea
that a full node index cannot accommodate the entire application
usage patterns, we introduce the Range as a less granular unit.

Our store defines the range as an insert unit: by populating an
XML DataSource with tokens corresponding to a node we create a
first range (the initial content). A successive insert of a new child,
define a new range, while the existing range is split in two. The
choice of the representation (tokens), as presented in Section 3,
has a crucial role in making the notion of Range possible: each
sequence of tokens can constitute a range. The real choice is made
by the application itself.

We can draw an analogy between the implementation of relational
database systems, where a Record is as a sequence of variable-
sized fields and our model, where a Range is a sequence of
variable-sized tokens. What we add in the XML approach is that a
Range is defined by the usage pattern of the application, and not
by a fixed schema. In our model, we must also maintain an order
between Ranges in order to preserve document order of tokens.
Ranges, as also described in the previous section, are the way to
obtain cheap updates.

4.3 The Range Index (Coarse-grained index)
The role of an index is to quickly locate a position in the store.
The range index is to locate the range corresponding to an ID
specified in an update operation. Ranges represent insert units – as
opposed to a full index, which would have contained all Ids
individually. The range index contains less entries, but it is also
fuzzier (i.e., it refers to an interval of Identifiers instead of to a
single one). The Storage level is able to retrieve a range, given its
Id.

A consequence of this way to represent data is that Node
Identifiers need not be stored together with the tokens they refer
to. By knowing the start identifier of a Range and by successively
reading successive the tokens of that range, identifiers can be
generated and re-associated to the tokens they belong to. The
advantage is better space utilization (low storage overhead), a
valuable resource in case of variable-length IDs. Section

4.4 The Storage Model (revised)
Based on the existence of Ranges as the logical storage unit, the
Storage level comprises chained blocks, which, at their turn,
contain ordered ranges. Document order is preserved through the
chaining of blocks and through the ordering of ranges inside
blocks. (see Figure 3).

Figure 3: The XML Data Instance as a sequence of ranges,
and the Range Index

4.5 Functionality of the Range Index
This section presents a simple usage scenario of ranges in the
store. We assume that we have on an initially empty Data Source.
The operations which are performed are:
1. Insert 2 sibling Nodes (contain 100 nodes in total)

2. Insert a child (40 nodes) as the last child of the node which is
identified by 60: insertIntoLast(60,<<new data>>)

The effects on the Store are that tokens are created for the inserted
data, and they are stored sequentially on the pages. Node Ids are
created, but only the ranges are inserted in the Range Index.

The detailed description of the effects of each step on the Range
Index are described below:

1. Allocate 100 identifiers for the inserted nodes, and create
range 1 with Ids 1-100. Range 1 is stored in Block 1.

2. Insertion of the child :

a. Locate second node using the Range index (id 60 is
in range 1)

b. Locate range and offset of the end token of the
node with the Id 60.

c. Split range number 1 in two (create range 3)

d. Create a new range corresponding to the inserted
data (2), and allocate 40 unique identifiers

e. Store the new range (Block 1) and insert the split
range in the storage. (Blocks 2).

Table 2. Range Index (Coarse index) with an initial range.

RangeId BlockId StartId EndId

1 1 1 100

Table 3. The Range Index (Coarse index) after an insert
(nodes 101-140, range 2) and split of range 1.

RangeId BlockId StartId EndId

1 1 1 70

2 1 101 140

3 2 71 100

Tables 2 and 3 describe the configuration of the Range Index
during inserts.

5. THE LAZY/PARTIAL INDEX
The notion of Range and that of Range Index allow us to optimize
update operations: fewer entries are inserted to the range index - a
big step forward in comparison to the full index approach.

The price to pay for having cheap updates is that reads become
more expensive. Since the nodes cannot, in general, be accessed
directly anymore (they are ‘hidden’ insider a certain range),
additional lookups need to be performed. A full index would have
been able to directly access each node. The full index has an
advantage of quick lookups, but it is unacceptable because of two
things: the high memory overhead and expensive update
operations.

The solution to this problem is a Partial Index[18]: using the
advantages of the full index, but only when needed. The result of
lookup operations, performed during updates is inserted in the
partial index: either the range of a token, the offset of a token
inside its range, the location (range, offset) of the end token of the
node (i.e. node token) inside the range and the position of the end
token of the node inside. With the help of this additional structure,
a repeated search for the same logical position will benefit from
the existence of this value in the partial index (“jump“ to the end
of the given node).

The partial index stores, therefore, information on the individual
nodes: their exact ranges and offset inside the range (for
simplicity, the example in Table 3 only describes the existence of
the range of a token). Because this very granular functionality is
the one which we try to avoid from traditional approaches, the
partial index is actually a combination between a real index (such
as those defined by other identifier schemes) and a cache. The
combination between the Range Index and the Partial Index (see
Figure 4) achieves the goal of being, adaptive, flexible and lazy in
the XML world. This can be done by not trying to index
everything, but only if and when needed.

Figure 4: Partial Index entries enrich the coarse Range Index

 Referring to the example from Section 4.5, the partial index
(considered empty at the beginning), would be used as follows:

1. Inserting on an empty data source does not create entries in
the Partial Index

2. Inserting a new node:

a. Locating node with Id 60 using the range index in
range 1: a new entry is inserted in the partial index
to idicate the range.

b. Locating the end token of the id 60. This means
that after the insert, the location of the end token is
the range 3: a new entry is inserted in the partial
index.to indicate the range (see Table 4).

Table 4: The Partial Index (Granular) after the second insert:
lookup positions have been memorized

6. ORTHOGONALITY OF ID SCHEMES
As mentioned in the introduction, proposals for indexing and
identifier schemes for XML constitute a large part of the existing
research on XML [16][19][6][19]. Indexing XML data relies
heavily on the fact that nodes in an XML document are assigned
an identifier. In particular, update operations are expressed based
on these identifiers and indexes can be build on top of them. The
XQuery Data Model, which we implement, requires document
order in the XML representation and unique identity of Nodes
inside this representation. We use Node Is, generated at insert
time, and we obtain document order by chaining blocks and
maintaining order of Ranges inside blocks.

As opposed to previous approaches, our model provides a
separation from the API of the application: a range can span over
several nodes, or over parts of a node (represented as a sequence
of tokens). Ids of nodes are, currently, orthogonal to our way of
indexing.

6.1 Low Storage Overhead
The Range Index is a coarse-grained index (see Section 4). This
already means lower storage overhead over a full index approach.
Beside its role of locating a Range in the storage, the Range Index
uses properties of Ids for locating the range of a node with the
given id. This functionality can be described as follows:

rangeIndexLocate : { ID } -> { R }

where {ID} is the set of Node identifiers in the store, and {R} is
the set of all ranges in the Range Index. Currently, we achieve this
by maintaining information on each [startId, endId] interval of
the ids inside a Range. Since a Range is defined as a sequence of
tokens in document order, we can obtain further decrease storage
overhead by only storing the Identifiers of the first node inside a
range. The Id schemes with this property generate the Id of the
next token ID using a simple factory function:

idFactory : {ID} X {token} -> {ID}

Many existing identifier schemes are compatible to our current
approach, because they have the previous property. [19][17].

6.2 Stable and Comparable Identifiers
Stable identifiers are the way to build indexes on the store: such
an index can be external and based on logical node identifiers.
Currently, stable identifiers can be obtained by assigning unique
integer number to nodes at insert times This simple approach
allows us to define actual ranges of Ids (in the example of Table:
1-70, 101-1). The Ids inside ranges are comparable Ids inside
ranges. We can obtain a semi-stable document order at read time
(since tokens are stored in document order and read sequentially).
The combination of order between ranges and order of ranges in
the storage, can also be put in connection to partially-stable
identifier schemes, such as those described in [19].

Ids which are both stable and fully comparable in the document
order, can currently only be obtained by using a different

identifier scheme (in particular [17]). Further details are omitted
for lack of space.

7. EXPERIMENTAL RESULTS
The following micro benchmarks reflect the effects of using a
coarse index and a partial index, as opposed to a full index, in our
representation. The identifier scheme associates unique integer
values to each node, at insert time. However, only ranges become
entries in the index. A memory-based partial index lazily adds
information on the location of tokens inside ranges (begin and end
token).

Experimental setup: our first implementation is built completely
on top of a relational database system. We use Java and JDBC to
define express the operations of the interface of the store. The test
platform was a Pentium 4 2,8Ghz/512MB RAM, running SuSe
Linux9.0, and using a MySQL as a database.

The parameters that influence the results of the benchmark are the
size and number of ranges. A coarse-grained index means low
update overhead but a larger overhead at read and lookup times.
On the other side, an index containing many entries (even coarse-
grained) also leads to performance decrease at insert time. The
partial index improves reads especially in the case of more
coarse-granular range sizes, as it builds entries lazily (cache-like).
The experiments involve the following micro benchmarks: Inserts,
sequential reads, and random reads of small pieces of data in the
presence of a full index, range index, and, respectively the
combination of range index + partial index (see Table 5). The
metric is kilobytes/second (read speed, relative to data size).
Table 5: Experimental results: Lazy indexing in XML storage

Indexing approach Insert
(kb/s)

Seq.scan
(kb/s)

Random
reads (kb/s)

Full Index
(max.granularity) 27,91 1298,59 672,22

Range Index
(many, granular entries) 97,07 1333,47 136,98

Range Index
(few, coarse, large entries) 91,03 1333,47 33,41

Range Index
(few, coarse, large entries)
+ Partial Index (memory)

182,32 1333,47 994,36

The results reflect the expected behavior: the Range Index clearly
brings advantages in what regards update speed: less entries are
entered the index. As the number of entries increases, however,
even with smaller data quantity, the advantages diminish (many,
granular entries). The Partial Index helps to achieve cheaper reads
and lookups (especially when the range index is coarse). We are
considering more optimizations of the read/update/storage
overhead.

8. RELATED WORK
Our work bears close resemblance to existing native XML storage
research[12][11]. Even though the flexible granularity is taken
into consideration by the authors, the tree model of the XML data
is not abstracted away but is used to define, in a similar approach,
partial indexes. Other similarities to this independent research
involve sequentially storing the XML data, but the notion of

NodeID Begin Token End Token

60 (Range) 1 (Range) 3

variable-size range and varying granularity are not entirely
contained in the proposed approach: element node (i.e., fine-
grained units) are still the storage unit in this approach. The
hybrid approach taken by Natix[15] and its tree-based model also
brings ideas in the field of granularity of records, but it relies on a
tree model. Logic identifiers have not been extensively studied in
this research. A special mention deserves a project[3] which,
under the umbrella of enhancing existing identifier schemes based
on containment join-based algorithms for evaluation of XPath
expressions, defines the notion of ‘segment’ (similar to a range),
as a group of elements which are treated as a single insert
operation, instead of separate ones. The experiments study the
effect of this coarse-granular unit, especially as the segments
increase in number. Their performance is degraded because of the
eager approach to indexing the content of the segment (group of
elements) define lazily. Other approaches try to take adaptive and
laziness in XML processing, but in the field on queries and path
evaluation[4].

9. CONCLUSIONS AND FUTURE WORK
This paper described a data representation and model of an XML
store, inspired by the notion of records in relational databases. The
immediate advantages are independence of our data format from
the API used by the XML application, and the possibility to adapt
to the application pattern. The store achieves this by lazily
creating its storage and index structures and optimizes for reads or
updates according to the how the application focuses on one or the
other. The process is transparent to the application.

Our approach to XML Storage involves an exploration of a
number of design options. We are currently evaluating
experimentally the effects of variable-sized ranges as logical unit
for XML data representation. The effect of functionality of the
partial index is also to be taken into account. Structural properties
of the actual elements of the XQuery DataModel, such as
hierarchical or sibling relationships can also be maintained by the
Partial Index.

Another aspect to explore, not addressed here, is concurrency. The
flat model proposed in this paper allows the definition of these
concepts on a three-layer architecture: blocks, ranges and tokens.
Again, the principles of storage already defined in the context by
relational database systems, have an immediate application here.
The issue that differs from the relational world is the necessity to
always maintain the order between ranges. This is ongoing work.

10. REFERENCES
[1] Al-Khalifa, S.; Jagadish, H.V.; Koudas, N.; Patel, J.M.;

Srivastava, D.; Yuqing Wu, Structural joins: a primitive for
efficient XML query pattern matching ICDE 2002

[2] Boag, S. D. Chamberlin, M. F. Fernandez, D. Florescu, J.
Robie, and J. Simeon. XQuery 1.0 An XML Query
Language, W3C Working Draft, Nov 2003.

[3] Catania B, Beng Chin Ooi, Wenqiang Wang, Xiaoling Wang
Lazy XML Updates: Laziness as a Virtue of Update and
Structural Join Efficiency, ACM SIGMOD, June 2005

[4] Chin-Wan Chung J.-K. M. and K. Shim. APEX : An
adaptive path index for XML data. ACM SIGMOD, June
2002.

[5] Clark J., S. DeRose, XML Path Language (XPath), Version
1.0. W3C Recommandation (Nov. 2000)

[6] Cohen, E., Haim Kaplan, Tova Milo: Labeling Dynamic
XML Trees. PODS 2002: 271-28

[7] Florescu D., C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The BEA/XQRL streaming XQuery processor. In
Proceedings of International Conference on Very Large
Databases (VLDB), pages 997–1008, Berlin, Germany, Sept.
2003.

[8] Florescu D., D. Kossmann, Storing and Querying XML Data
using an RDBMS. IEEE Data Engineering Bulletin 22(3),
1999.

[9] Grust T. Accelerated XPath location steps. ACM SIGMOD
15(5):795–825, June 2002.

[10] Halverson A., V.Josifovski, G.Lohman, H.Pirahesh,
M.Moerschel. ROX:Relational Over XML. In VLDB 2004

[11] Haustein M., Härder T, Fine-Grained Management of
Natively Stored XML Documents, Submitted

[12] Haustein M., Theo Härder: Adjustable Transaction Isolation
in XML Database Management Systems. XSym 2004: 173-
188

[13] Helmer S., C.C. Kanne, and G.Moerkotte, Lock-based
protocols for cooperation on XML documents, Technical
report, the University of Mannheim, 2003

[14] Jagdish H. et al. Timber: A native XML database. ACM
SIGMOD, page 672, June 2003.

[15] Kanne C. C. and G. Moerkotte. Efficient storage of XML
data. In Proceedings of IEEE International Conference on
Data Engineering (ICDE), 2000.

[16] Li Q. and B. Moon. Indexing and querying xml data for
regular path expressions. In VLDB, September 2001.

[17] O'Neil Patrick E., Elizabeth J. O'Neil, Shankar Pal, Istvan
Cseri, Gideon Schaller, Nigel Westbury: ORDPATHs:
Insert-Friendly XML Node Labels. SIGMOD Conference
2004

[18] Stonebraker. M. The case for partial indexes. SIGMOD
Record, 18(4):4--11, 1989

[19] Tatarinov I., et al. Storing and Querying Ordered XML
using a Relational DBMS, In VLDB, 2002.

[20] World Wide Web Consortium, Extensible Markup Languag
(XML). W3C Recommendation, February 1998.

[21] World Wide Web Consortium. Document Object Model
(DOM) Level 3 Core Specification. W3C Recommendation
Sept. 2001.

[22] World Wide Web Consortium. XQuery 1.0 and XPath 2.0
Data Model, W3C Working Draft, April 2005

