
Building a Scalable Native XML Database Engine on
 Infrastructure for a Relational Database
 Guogen Zhang

IBM Silicon Valley Lab
555 Bailey Ave

San Jose, CA 95141, USA

gzhang@us.ibm.com

ABSTRACT
We describe the architecture and some aspects of System R/X, a
native XML database engine that is built on the same mature
infrastructure for a relational database and integrated with the
relational engine. We describe what parts of the infrastructure can
be reused, what need to be extended, and what are totally new to
the XML database and their techniques. Our overall strategy is to
base XML storage and search on the scalable relational
technology with substantial extensions. Many techniques are
novel to our knowledge. We also provide perspectives along the
discussion and point out some open research issues.

1. INTRODUCTION
It took about one decade for relational database products to
mature commercially and become the mainstream database
management systems. Will XML database products take the same
time to mature? The answer is maybe no, and maybe yes. The
decades-long industrial experiences of developing database
products and huge research and development efforts by both
industry and academia will no doubt accelerate the maturity of
XML databases. However, the XML data model and the XQuery
language [29] are inherently more complex and more powerful
than their relational counterparts. This makes solid delivery of
XML databases ever-more challenging.

It is a critical part of engineering effort in implementation of
XML databases to leverage existing database engine
infrastructure. Furthermore, it is also a customer business
necessity to integrate XML capability with an existing relational
product for smooth and incremental adoption of XML database
technology.

While there is a large volume of literature on XML support using
relational databases, we believe that directly mapping XML into
relational model and translating XQuery into SQL would not
work well in terms of performance and integrity due largely to the
hierarchical and flexible nature of the XML data model. In this
paper, we describe our experiences of extending a relational
database with native XML support in System R/X. System R/X is

a sister project of System RX [23] on the IBM z/OS platform
targeted at enterprise users with integrated relational and XML
support. By native XML support, we mean that storage and
processing of XML data are neither using relational or object-
oriented data model directly, nor using large objects (LOBs), but
using those specifically designed for XML, including storage
format, indexing, query processing, and concurrency control,
among others.

Indexing is critical to database scalability. System R/X supports
XPath value indexes. An XPath value index maps the values of
nodes identified by a path expression from documents to the
logical positions of the nodes in the documents and physical
record positions in the storage. XPath value indexes can be used
to answer efficiently XPath queries with predicates on values.

One of the interesting features of System R/X is to leverage
heavily on the data management infrastructure for a relational
database, and to adapt and extend it for the native XML
functionality.

The rest of the paper is organized as follows. First in Section 2, an
architectural overview is presented, including what are reused,
what are extended, and what are new. Then in the following
sections, major new features and extensions are described. In
Section 3, we describe the storage, data insertion and traversal. In
Section 4, we describe query processing, including basic scan-
based algorithm and index-based access methods. In Section 5, we
describe concurrency control issues. In Section 6, we conclude the
paper and point out the future work.

2. ARCHITECTURE
The high-level architecture of System R/X is shown in Figure 1.
XML services are added in parallel to relational services (e.g.
searching based on predicates, join algorithms) on the same data
management infrastructure for relational data that has been tuned
for decades. The data management features that need no
enhancement or need minor enhancement include storage (data
manager, buffer manager, and external storage management),
catalog and directory, logging, backup and recovery and other
utilities, instrumentation, etc. It is worth pointing out that to the
lower level components of the infrastructure, our packed XML
data looks like rows in relational tables.

New features in XML services include new data format for XML
hierarchical data model, XML parsing and validation, XML
construction and serialization, XML data traversal and XPath
evaluation, XPath index key generation, and new index-based
access methods.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
XIME-P 2005, June 16–17, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00

Figure 1. High-level architecture of System R/X

Language compiler and query execution are significantly
enhanced to support compilation, optimization and execution of
SQL/XML and XQuery languages, including client connectivity,
distributed facilities, and stored procedures. Index manager and
lock manager are enhanced to support XPath indexes and
concurrency of XML operations. In the meantime, we isolate
XML related processing from existing SQL processing as much as
possible to avoid making the code too complex to cause
functional regression and performance degradation of existing
SQL features.

Currently, all the manipulation and querying of XML data are
through SQL and SQL/XML with embedded XPath and XQuery.
To SQL, XML is just a new data type with a more complex
content, similar to large objects. Except for the streaming and
deferred access purposes, all the standard processing flows remain
largely unchanged for XML, and quite similar to LOBs.

3. STORAGE OF XML DATA
3.1 Persistent XML Data
In SQL/XML, a table can have XML columns. A value for an
XML column does not have a length limit. In many aspects, XML
data is similar to LOB data. However, the limited operations for
LOBs impose significant restrictions on XML subdocument
update if XML data were stored as LOB. On the other hand, XML
data trees of the XQuery data model [29] are similar to objects in
object-oriented databases. However, many object-oriented
database storage schemes were not proven to be as scalable as
relational databases.

Relational table spaces are well tuned for efficient space
management, reliability and scalability. They are a natural choice
to store persistent XML data also. But we are not using a
decomposition or mapping approach [9]. Figure 2 shows how
XML column data can be stored.

Figure 2. Storing XML data using a regular table space

In our scheme, an internal table space is created for each XML
column in a base table. The internal XML table is a table that has
three columns (DocID, minNodeID, XMLData), where the
XMLData column is a SQL VARBINARY type that contains
packed XML data to be explained shortly. The minimum node ID
in XMLData is put in minNodeID, which, together with DocID, is
used for clustering. A base table with an XML column will have
an implicit DocID column, shared by all the XML columns in the
table, and used to link from the base table to the XML table. In
addition, a DocID index on the base table is used for getting to
base table rows from XPath value indexes.

The way XML tree data is packed into records is illustrated in
Figure 3. In the stored XML data, all the names for elements,
attributes, and namespaces are encoded using integers across the
entire database. There are seven kinds of nodes in the XQuery
data model. Within each packed record, structure nesting is used
to represent the parent-child relationship between nodes, similar
to what Natix does [18]. Each non-leaf node contains the number
of children (shown in parentheses in Figure 3(b)), followed by the
child nodes, recursively. Subtree length is also contained in non-
leaf nodes to support efficient tree traversal by using the firstChild
and nextSibling operations. Assuming the tree is too big for one
record, we pack a subtree or a sequence of subtrees into a separate
record, in a bottom-up fashion. A packed subtree is represented
using a proxy node in its containing record. No explicit physical
link is used between records for maximum flexibility of record
placement that is one of the salient features of relational data.
Instead, logical node IDs are used to link between records through
a NodeID index that will be explained shortly.

Figure 3. Packing an XML tree into two records

Each XMLData contains a single subtree or a sequence of
subtrees that share a common parent node. The parent node is also
known as the context node for the record. The packed record
includes a record header that contains the context path
information, including the absolute node ID, the path from the
root (a list of name IDs), and in-scope namespaces for the context
node. Each node contains a relative node ID, as shown next to a
node in Figure 3(a). Node IDs are prefix encoded [7] as Dewey

Node1

Node2 Node7

Node3 Node4 Node5 Node8

Node6

 Node1 (3) Node 2 (p)

Node6 Node7 (1) Node8

Rec hdr

Node 2 (3) Node3 Node4

Node5

Rec hdr

Node0

Node0 (1)

00

02

02

02

04 06

04 06
02

rid1

rid2

(a) An XML tree

(b) Two packed records
Base Table

 XMLCol DocID …

DocID index

Internal XML Table

NodeID index

 XMLData DocID minNodeID

XPath value index

B+tree B+tree B+tree

Data management infrastructure

Relational
Services

XML
Services

Language
Compiler

Execution &
Runtime

External Storage System

IDs in such a way that they are stable upon update of the tree.
Basically, a relative node ID ends with an even-numbered byte;
and any odd-numbered byte means that the relative ID is extended
to the next byte. The absolute node ID of a node is the
concatenation of relative node IDs along the path from the root to
the node. The root node ID is an exception, which is always 00, so
it is implicit in the absolute node IDs. String comparison on the
node IDs provides document order. And there is always space for
insertion in the middle by extending the node ID length when
necessary. The relative node ID of each level can be recovered
from the absolute node ID.

A NodeID index is created on each XML table to map a logical
node ID to its physical record ID (RID). For each contiguous
interval of node IDs for nodes within a record in document order,
only one entry is in the node ID index, which is the upper end
point of the node ID interval. For illustration, there are three
entries for the two records in Figure 3(b): (02, rid1), (020206,
rid2), and (020602, rid1), where rid1 and rid2 are RIDs for the
two records.

This tree packing scheme makes sense in terms of performance
when compared with the relational representation of one row per
node (or edge) [28]. Assume the storage overhead for each row is
����������	�
� ����
�����	� ������� ���p, i.e. p nodes per record on
average, and the average node body size is n. Under the one node
per record scheme, the storage for a tree of k nodes is: n k + ��k =
k (n�����
�����������������������n. In comparison, using p packed
nodes per record scheme, the required storage is about n k�����k/p
= k (n�����p�
������ ��� ������������ ���np). If we use a node ID
index for both cases, the one node per record scheme requires k
index entries, while the packed nodes scheme only requires about
2*k/p entries or less.

Now let us consider tree traversal time, assume one relational join
for each node requires time of t, traversal of a k-node tree with
one row per node requires time of (k-1)*t (or (k-1)(t + t1), t1 is the
time of local access within a record, which is much smaller than
t). For the packed tree scheme, it requires time of kt/p (or kt/p +
kt1 with local traversal time within a record). The ratio is
approximately 1/p (assuming t >> t1 and a large k).

The above analysis shows that the larger the packing factor p, the
more efficient the storage and tree traversal operations. However,
there is an upper limit on the record size by the page size, and also
the counter factor for update overhead. To update one single
node, under the one row per node scheme, we only need to touch
storage of one record, with size of n ���, while in the packed tree
scheme, we will touch storage of ���� pn. However, except for
larger log spaces required, touching a relatively large size may not
be too bad, since the I/O unit is a page.

Some other factors considered in the design of this format are the
efficiency of the node packing algorithm, easy maintenance of in-
scope namespaces, compression of nodeIDs, skipping subtrees in
XPath evaluations, simple move and copy operations of subtrees,
being self-contained when accessed from an XPath value index,
and subtree locking and versioning for concurrency control.

We use a simple size-based grouping method. In comparison, the
Natix storage scheme uses a complex split matrix mechanism to
control the grouping, which we do not know how to automatically
apply in real systems. In addition, we are not clear how Natix
handles in-scope namespaces and node IDs.

3.2 Insertion of XML Data
Insertion of relational data incurs some minor cost of type
conversion or character encoding conversion. None of these is
complex compared with insertion of XML data, which requires
expensive parsing or validation. Application domain interfaces for
XML, such as SAX or DOM interface, suffer from significant
overhead of excessive procedure calls for event handling or in-
memory construction of intermediate data structures. To reduce
the overhead, we use a proprietary parsing and validation
interface, which is the buffered token stream. The token stream is
a binary stream of tokens with namespace prefixes resolved,
namespace and attribute order adjusted, and optionally with type
annotation if a document is Schema-validated. It is similar to the
token stream in BEA/XQRL [10]. Buffering reduces per-token
procedure call cost significantly.

In addition, high-performance validation with LALR parser
generator technique is used for XML schema validation. As
shown in Figure 4, an XML schema has to be registered before it
can be used. During the registration, it is compiled into a binary
format like a parsing table and stored in the catalog. At the
execution time, the binary schema is loaded and executed by a
validation runtime to generate a token stream. Both validating and
non-validating parsers are custom-made for high-performance.

Figure 4. Schema registration, XML validation and parsing

During tree construction, no separate trees of in-memory format
are built. Rather, tree-packed records are generated from the
bottom up in a streaming fashion. Index keys for the node ID
index and XPath value indexes are generated per record, which
fits existing infrastructure very well.

3.3 XPath Value Indexes
Initial XPath index support in System R/X uses and extends the
same B+tree infrastructure for relational indexes, and is relatively
simple. It is our belief that index size should be kept much smaller
than data size for efficiency, and maintenance of too complex
indexes can become a bottleneck for high volume systems.

Users can create XPath value indexes on frequently searched
elements or attributes by specifying a simple XPath expression
without predicates, such as “/catalog//productname”, and
a data type for the key values, such as string (equivalent SQL

Catalog

Schema
Compiler

XML schema
(.xsd)

Schema
Bin Format

Validation Run
Time (VM)

XML document

Database

Non-validating
Parser

Database

Token
Stream

Token
Stream

XML document

Tree
Construction

Tree
Construction

VARCHAR(n) is used). A few simple types supported, such as
double, string, and date. Key values are converted from the string
values of the nodes, identified by the XPath expression. A value
index entry contains (keyVal, DocID, NodeID, RID), which can
map a key value to a logical ID (DocID, NodeID) or physical ID
(RID) in the XML table, or both. A simplified version of our
streaming XPath algorithm (QuickXScan) is used to evaluate the
XPath on each record. One major difference of an XPath value
index to the index manager or utilities maintaining the index is
that there may be zero, one or more index entries per record, as
commonly seen in extended indexes, while for relational data,
there is one-to-one correspondence between an index entry and a
row. See Section 4 for the use of XPath value indexes in query
processing.

3.4 Traversal of Stored XML Data
To traverse in document order a persistently stored XML
document with a given docID value, first the NodeID index is
searched with (docID, 00) as the key. The root record can be
identified. The XMLData is then traversed. If a proxy node is
encountered, its node ID nodeID is used to search the NodeID
index with (docID, nodeID) as the key to find the RID for the
corresponding record. Stacking has to be used during traversal. At
a higher level, the records form a block-based tree, and traversal
of this tree is also in a depth-first order, with fetch sequence
matching the clustering order of (DocID, minNodeID).

When a (docID, nodeID) is given from an XPath value index, to
find the record containing the corresponding node, use this pair as
the key on the node ID index, the RID will be returned. Traversal
inside the record by node ID can find the right node with the
given nodeID. All the information required by the data model is
available. The successful search on the NodeID index is attributed
to the arrangement for the NodeID index keys by using the upper
end points of NodeID intervals.

It is worth noting that skipping to the next sibling may result in
skipping an entire subtree beneath a node, which may contain
many records.

4. QUERY PROCESSING
An input query goes through the typical query processing steps:
query parsing, semantics and transformation [25], access path
selection [27], plan generation, and execution.

The XQuery/XPath parser is generated by a LALR(k) parser
generator [1], separately from the SQL parser. It is worth noting
that in our case LALR(1) is used with a much simpler lexical
scanner than what is described in the W3C specification, achieved
by rewriting the BNF production rules. Query semantics checking
and transformation are performed to optimize the query by query
rewrite. Access path selection is relatively simple at the moment.
Below we cover some topics related to constructor functions,
XPath evaluation, and run time organization.

4.1 SQL/XML and XQuery Constructors
The constructor functions are to generate XML data. Due to
known structure of constructors, there is a great opportunity to
optimize the constructor functions. We use an example to
illustrate the technique. Assuming we have the following nested
functions in SQL/XML:
XMLELEMENT(NAME "Emp",

 XMLATTRIBUTES(e.id as "id",

 e.fname ||' '|| e.lname AS "name"),

 XMLFOREST(e.hire, e.dept AS "department"))

It is fairly common to have nested constructor functions due to the
nature of XML. The standard function evaluation process is to
evaluate the arguments first, then evaluate the function. If we
follow the standard steps, it will either involve small data items
linked by pointers or need multiple copies of the same data items.

We optimize constructor functions by flattening the nested
functions into one function and represent the nesting structure
with a tagging template, as illustrated in Figure 5. In the template,
the number means which argument to fill in. The result of the
constructor functions is an intermediate result representation that
includes a pointer to the template with a data record as shown in
the bottom of Figure 5. This intermediate result is optimized
because no repetition of the tagging template occurs, which is
very effective for generating XML for large number of repeated
rows or the aggregate function XMLAGG.

Figure 5. Constructor function optimization

In addition, for XMLAGG ORDER BY evaluation, typical
external SORT will need to sort each group of rows, suffering
from significant overhead. We apply in-memory quicksort to the
linked list representation of rows in each group of XMLAGG,
achieving high performance. For XML values referenced in the
constructors (or other functions), a reference construct called an
XML handle is used. The same techniques apply to XQuery
constructors, since the variables referenced in XQuery
constructors are logically components from tuples.

4.2 XPath Evaluation by QuickXScan
There are many XPath and XQuery evaluation algorithms
 [5] [11] [12] [14] [20] [30]. Some are based on relational
representation and structural joins [2], which in turn can exploit
indexes [16]. However, a base algorithm should have the
characteristics of a relational scan – it evaluates an XPath
expression by one pass scan of a document without help from
extra indexes, and also has similar performance characteristics,
i.e. not much more expensive than the scan. We have invented an
optimal streaming XPath algorithm, called QuickXScan [31] for a
subset of XPath path expressions that consist of the following five
forward axes: child, attribute, descendant, self, and descendant-or-
self. The parent axis can also be supported based on query rewrite
 [24] or minor extension to the base algorithm.

Tmpl

Args
 (1)
 (2)
 (3)
 (4)

XConstructor

XElem

XAttr

XElem

XElem

“Emp”

“id”

“name”

“HIRE”

“department”

(1)

(2)

(3)

(4)
e.id
e.fname || ‘ ‘ || e.lname
e.hire
e.dept

 ‘1234’ ‘John Doe’ ‘1990-2-18’ ‘Accting’

Like many other XPath algorithms, such as TurboXPath [17],
QuickXScan models a path expression with a query tree. For
example, a path expression /b//s[.//t = “ XML” and f/@w > 300]
can be represented as a query tree shown in Figure 6(a), where r is
the root step, each node is labeled by the name test or kind test,
and the axis of each step is differentiated by a single-line edge for
child axis or a double-line edge for descendant axis to its previous
step (note that in some cases the descendant-or-self axis can be
reduced to the descendant axis).

Figure 6. An example query tree and document tree

QuickXScan is based on the principles of attribute grammars [19]
and syntax-directed evaluation [1]. An XPath expression is
converted into a set of “ attributes” in an attribute grammar
necessary to evaluate the path expression, which is different from
using explicit attribute grammars to query XML documents
 [21] [22]. Both inherited attributes and synthesized attributes are
used. A basic inherited attribute is to determine whether an XML
tree node matches a query node or not, evaluated during the top-
down traversal of an XML document tree. Non-matched XML
tree nodes are discarded, while matched XML tree nodes, called
matching instances (or just matchings), form a logical sub-graph
(also a tree) of the original XML tree. A typical synthesized
attribute for a matching instance is to compute the sequence of
children or descendants under the node, and eventually used for
predicate evaluation or for deriving the result sequence. Predicate
pushdown can be achieved by using Boolean-valued attributes.
Synthesized attributes are evaluated during the bottom-up
traversal as usual. A set of attributes is associated with each query
node, but is not shown in Figure 6(a). The XPath evaluation
reduces to the evaluation of the attribute grammar constructed
from the XPath expression.

QuickXScan uses two important transitivity properties among
matching instances and their attributes. The first transitivity is
among matching instances. For an XPath expression such as
//A//B, if a1 and a2 are of ancestor-descendant relationship and
both match with A, and if b1 matches B and is a descendant of a2,
then b1 is also a descendant of a1. The second transitivity is for
sequence-valued attributes. For the matching configuration just
mentioned, if s1 is a sequence of B descendants of a2, all nodes in
s1 also belong to the sequence of B descendants of a1.
QuickXScan uses these two properties to avoid unnecessary
matching tests and compute sequence-valued synthesized
attributes incrementally using propagations.

At the execution time, a logical (horizontal) stack is associated
with each query node to keep track of matching instances with
transitivity, as in the Twig Stack algorithm [6]. During the top-
down traversal of a document tree, each node is matched with one
or more query nodes. Matched nodes are pushed onto a stack that
is associated with each query node, and inherited attributes, such
as count, can be evaluated. To implicitly record the matching
paths and facilitate attribute value propagation, a matching
instance has an upward link to the matching instance at the stack
top of the previous step if it does not share the matching in the
previous step with its ancestor in the same step.

Illustrated in Figure 7 is a comparison of matching state between
QuickXScan and other streaming algorithms [17] [26] at the time
when t4 of the document tree in Figure 6(b) is matched with t.
Only the stack top needs to be checked for matching a node,
which reduces the number of active states (in term of states of an
automaton) from potentially exponential (when a path expression
like //a//a//a matches with a document with recursively nested “ a”
elements) to the number of query nodes at maximum.

Figure 7. Part of the pattern and matching

During the bottom-up traversal, nodes are popped off from the
stacks and synthesized attribute values for matching instances are
evaluated, including candidate result sequences, which will go
through filtering by predicates associated in the upper query
nodes. QuickXScan propagates attribute values among matching
instances when a matching instance is popped off from a stack.
Table 1 shows propagation scenarios of basic sequence-valued
attributes. Propagation can be upward or sideways, or both.
Duplicate propagations can be avoided if we follow these rules:

• For b: propagate the value upward if there is an upward
link or else propagate sideways, and

• For a: propagate the value sideways and accumulate for
b descendants of a.

When there are predicates, the propagation rules become a little
complex, but we can guarantee no duplicates for a sequence-
valued attribute, see [31] for details.

QuickXScan is an optimal streaming XPath algorithm in terms of
the number of active states and minimum buffer requirements [5].
It needs to maintain O(|Q|*r) matching units at any time in the
worst-case, where |Q| is the number of query nodes and r is the
recursion degree of a document, or how many nodes with the
same name are nested within each other at maximum. The time
complexity of QuickXScan is O(|Q|*r*|D|) in the worst case,
where |D| is the document size. Experiments show that it
outperforms the existing state-of-the-art streaming XPath
algorithms in both elapsed time and memory consumption, and is
orders of magnitude better than some DOM-based algorithm.

r

b

s

t

r0

b1

s2 s3

t4

r0

b1

s2 s3

t4 t4
…

(a) Part of pattern (b) In QuickXScan (c) In others

the stack for s

r

b

s

t f

@w

r0

b1

s2

t3 f2

@w2

t1 p1 s1

s3

t4 f1

@w1

…

t2

XML
200

400

(a) A query tree (b) A document tree

s Result query node

QuickXScan achieved our design goal of linear performance with
regard to the document size for a subset of XPath expressions in
practice (because of a small r value).

Table 1. Propagation of basic sequence-valued attributes

Path and matchings Path, attributes, and propagations

Path: … a/b
s: sequence of b children of a
Init: s1

� ������� �	��

�����
1 is created

At end of b1: s1 := s1 � {b1}; // upward

Path: … a/b
s: sequence of b children of a
Init: si

� ������� �	��

�����
i is created

At end of bi: si := si � {bi}; // upward
// no sideways propagation for s

Path: … a//b
s: sequence of b descendants of a
t: sequence of b descendant-or-self of b
Init: s1

� ������� �	��

�����
1 is created

 ti := {bi}; // when bi is created
At end of b2: t1 := t1 � t2; // sideways
At end of b1: s1 := s1 � t1; // upward

Path: … a//b
s: sequence of b descendants of a
t: sequence of b descendant-or-self of b
Init: si

� ������� �	��

�����
i is created

 ti := {bi}; // when bi is created
At end of bi: si := si � ti; // upward
At end of b2: t1 := t1 � t2; // sideways
At end of a2: s1 = s1 � s2; // sideways

4.3 XPath Evaluation by Indexes
Although QuickXScan is critical to the system performance, a
system based on QuickXScan alone will not possess desirable
scalability, just as a relational database with relational scan only.
The scalability of database systems largely relies on the efficient
access methods based on indexes. While special indexes can be
created to support evaluation of XPath solely based on the
indexes, these indexes will have to be a complete copy of the base
data and even larger than the base data, which in our opinion only
works for read-only documents, due to high index maintenance
cost. Our approach is to use indexes to quickly identify a small
subset of candidates and then perform further processing on them.

For small documents, using indexes to identify qualifying
documents would be efficient, which we call DocID list access.
That is, a list of unique DocIDs is returned from an XPath value
index, and documents are then fetched by using the DocIDs. For
large documents, the DocID list access is no longer efficient.
Instead, the NodeID list access applies. Since we do not keep
complete path information in an XPath value index, when the
XPath expression of the index contains a query XPath expression
but is not equivalent to it, we use the index for filtering, and re-
evaluation of the query XPath expression on the document data is
necessary. When multiple indexes are used to evaluate a single
XPath expression, we use DocID anding/oring, or NodeID
anding/oring at document level or node level, respectively.

Table 2. Access method examples

Access method Example

(1)
DocID/NodeID
list

Query:
‘/Catalog/Categories/Product[RegPrice > 100]’

Index:
‘/Catalog/Categories/Product/RegPrice’ as double

(2)
DocID/NodeID
filtering list

Query:
‘/Catalog/Categories/Product[Discount > 0.1]’

Index:
‘//Discount’ as double

(3)
DocID/NodeID
anding/oring

Query:
‘/Catalog/Categories/Product[RegPrice > 100 and
Discount > 0.1]’

Indexes:
(1) ‘/Catalog/Categories/Product/RegPrice’ as
double
(2) ‘//Discount’ as double

Table 2 lists some query and index examples for the access
methods. When the XPath predicate and value type of the query
match with the XPath expression and value type of the index,
DocID/NodeID list access applies, which is illustrated in the first
case of the table. When the XPath expression of the query is
contained in the index path expression, the filtering applies, as
shown in the second case of the table. When two or more
predicates match with multiple value indexes, anding/oring
applies, as shown in the third case. If all the indexes match exactly
with the predicates, the result DocID/NodeID list is exact. If one
of them is exact match, while the others are containment, NodeID
level anding will result in an exact list. Otherwise, the result list
will not be exact but filtering.

It is worth noting that our value indexes can be viewed as a simple
version of XPath views [3]. In implementation, we use decimal
floating-point number based on the new IEEE 754r for numeric
value indexing, which provides precise values within its range.

4.4 Virtual SAX and Runtime Architecture
Ideally, one single representation, such as the persistent store
format, should be used for all processing needs. However, due to
modularity or best-fit to a task, XML data can be in one of the
many forms during the query processing: token stream, persistent
store format, constructed format, or in-memory sequence, where
an in-memory sequence is the result of XPath/XQuery, and
constructed data can contain any of the other formats. To avoid
data copying and format conversion cost, we do not construct a
single unified in-memory tree representation for a task. There are
three major tasks for XML data in addition to parsing: (1)
serialization: to generate a serialized XML string for output to
applications; (2) tree construction: to generate packed records for
insertion into XML columns; or (3) XPath evaluation: to generate
an in-memory sequence as result.

Figure 8 shows how we use virtual SAX to organize the runtime
components to achieve shared code and pipelining. To perform
one of the tasks, a proper iterator is attached to the data as the
input interface according to the data format. As the iterator
traverses through the data, each input data item is converted into a
virtual SAX-like event, which is a set of parameters required by
the routines performing the task. All the routines are shared, and

a

b

a1

b1

a2

b2

a

b

a1

b1 b2

a

b

a1

b1

a

b

a1

b1

a2

b2

are inlined to avoid actual data copying and procedure call cost,
thus achieving high performance.

Figure 8. Runtime architecture

As in traditional relational processing [13], pipelining is exploited
whenever possible. However, sometime it is necessary to
materialize the result. Traditional temporary work files are used
for relational data. More efficient alternative to work files, 64-bit
virtual memory, is used for XML temporary data. XML handles
are widely used to link between relational data and XML data.
Fetch of persistent XML data is deferred until when it’ s
necessary.

5. CONCURRENCY CONTROL
There has been some recently work on adapting concurrency
control mechanisms to XML databases, such as path lock [8] and
other lock-based protocols [15]. We can define two concurrency
levels for XML data, that is, document level concurrency and
subdocument concurrency. We discuss briefly and provide some
perspectives here.

5.1 Document Level Concurrency
In SQL/XML or XQuery using a base table for a collection, an
XML column can be viewed as an indivisible unit, the basic level
of concurrency is at the document level. The isolation levels for
transactions on relational data can be naturally extended to cover
XML columns.

In lock-based document level concurrency, if we follow the access
sequence from a base table row to the XML column data, the lock
on the base table can cover the XML data. However, if we allow
direct access to the XML data from value indexes or from an
uncommitted reader that does not lock the base table rows, a
DocID locking scheme is required. For deferred access to XML
data, DocID locking is also needed. Care must be taken also to
prevent reading a partially inserted document by using a lock.

Alternatively, multiversioning can be applied to avoid locking by
readers, which is more efficient for mostly read workload. To
support multiversioning at document level, one scheme is to keep
most up-to-date data for XPath value indexes, but keep versions
for XML data and the NodeID index required. Without
versioning, the index entries for a NodeID index contain (DocID,
NodeID, RID), while with versioning, the entries will also include

a version number, i.e. (ver#, DocID, NodeID, RID) or (DocID,
ver#, NodeID, RID), with ver# in descending order. This will
guarantee a reader’ s deferred access to be successful.

5.2 Subdocument Concurrency
In subdocument concurrency, the isolation levels for XML data
become not so well-defined. Certainly we are only interested in a
consistent document at certain point of time.

In lock-based subdocument concurrency, we believe a multiple
granularity locking [4] is needed given the hierarchical nature of
XML data. Since we use prefix-encoded node IDs, locking using
node IDs can support the protocol efficiently because ancestor-
descendant relationship can be checked by testing if one is a
prefix of the other. However, with our tree packing scheme for
storage, a group of nodes form a record and the stored rows
represents a tree of records. Our study point us to the direction of
combining logical node ID-based multiple granularity locking
with multiversioning at subdocument level to make record level
consistency.

To support multiversioning at subdocument level, the NodeID
index entries will have to be different from whole document
versioning. One of the solutions is to let the index entries contain
(DocID, NodeID, ver#, RID), where the NodeID may be a real
interval end point, or a virtual index point without a real
corresponding version. Details are omitted here.

Efficient subdocument concurrency control with meaningful
isolation levels for weaker consistency remains a research area.

6. CONCLUSION AND FUTURE WORK
We have described the architecture and various aspects of a native
XML database that is built on the same infrastructure for a
relational database engine and integrated with the relational
engine. This paper is a report of work in progress, with many
unanswered questions remaining. However, we believe scalable
native XML database engine can leverage the existing
infrastructure tremendously, and only need to extend new storage
scheme, XML-specific operations and query processing, and
concurrency control when necessary. It is also our belief that at
least in the near term, it will have a better chance of success to
extend mature scalable relational storage and technology with
techniques that follow the same principles that made relational
databases scalable. These extended techniques include a value-
based storage model, highly efficient QuickXScan XPath
evaluation algorithm and XPath index-based access methods.

Our experience also confirms that XML processing is highly
CPU-intensive, with major contributors being parsing and
validation, traversal, and serialization, despite our efforts in
reducing the CPU cost in these areas.

We also realize that the current implementation of strict XQuery
data model for XML storage limits its applications to the data-
centric domains. For example, it is not sufficient to store the data
model alone to achieve byte-for-byte retrieval that is required for
XML content applications with XML resources. Building full-text
indexes on top of the XQuery data model, in addition to a LOB-
based original content, would cost too much for such applications.
An alternative approach would be to use specialized storage for
efficient query processing [32], along with an intact copy. Also it
remains to be seen if it requires new architectural extensions

Virtual SAX Virtual SAX Virtual SAX

XML document

Token
Stream

Constructed
Data

In-memory
Sequence

Virtual SAX

Tree
Construnction

Serialization
Services

XQuery Execution
Engine

XML document

Persistent
data

In-memory
Sequence

Persistent
data

Iterator Iterator Iterator Iterator

beyond the current scope to efficiently model and implement
collections and folders with XML.

Some future work includes tuning of the new extensions, new
efficient methods (e.g. join order enumeration), and new
capabilities, such as more complete XQuery and full-text search.

7. ACKNOWLEDGMENTS
I would like to thank many talented engineers of the System R/X
project and acknowledge contributions from engineers and
researchers of IBM Almaden, Toronto, Poughkeepsie, and Silicon
Valley Lab. Anonymous reviewers provided valuable comments
to improve the presentation.

8. REFERENCES
[1] Aho, A. V., Sethi, R. and Ullman, J. D. Compilers:

Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] Al-Khalifa, S., Jagadish, H. V., Koudas, N., Patel, J. M.,
Srivastava, D. and Wu, Y. Structural joins: A primitive for
efficient XML query pattern matching. In Proceedings of
ICDE, 2002

[3] Balmin, A., Özcan, F., Beyer, K. S., Cochrane, R. and
Pirahesh, H. “ A Framework for Using Materialized XPath
Views in XML Query Processing” , VLDB 2004, pages 60-
71.

[4] Barghouti, N.S. and Kaiser, G.E. Concurrency control in
advanced database applications, ACM Computing Surveys,
23:3, Sept. 1991.

[5] Z. Bar-Yossef, M. Fontoura and V. Josifovski. On the
memory requirements of XPath evaluation over XML
streams, In Proceedings of PODS, 2004.

[6] Bruno, N., Koudas, N., and Srivastava, D. Holistic twig
joins: Optimal XML pattern matching. In Proceedings of
SIGMOD 2002, pages 310-321, 2002.

[7] E. Cohen, H. Kaplan and T.Milo, Labeling Dynamic XML
Tree, In PODS, 2002.

[8] Dekeyser, S. and Hidders, J. Path locks for XML document
collaboration. In Proceedings of the 3rd Int. Conf. on Web
Information Systems Engineering (WISE), pages 105–114,
Singapore, 2002.

[9] Florescu, D. and Kossmann, D. Storing and Querying XML
Data Using an RDBMS, Data Eng. Bulletin, 22(3), 1999.

[10] Florescu, D., Hillary, D., Kossmann, D., Lucas, P., Riccardi,
F., Westmann, T., Carey, M., Sundararajan, A. and Agrawal,
G. The BEA/XQRL Streaming XQuery Processor. In
Proceedings of VLDB, 2003.

[11] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for
Processing XPath Queries. In Proceedings of VLDB, 2002.

[12] G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation:
improving time and space efficiency. In Proceedings of
ICDE'03, Bangalore, India, Mar. 2003.

[13] Graefe, G. Query evaluation techniques for large databases.
ACM Computing Surveys, 25:2, June, 1993.

[14] Gupta, A. and Suciu, D. Stream Processing of XPath
Queries with Predicates. In Proceedings of SIGMOD, 2003.

[15] Helmer, S., Kanne, C., and Moerkotte, G. Evaluating lock-
based protocols for cooperation on XML documents, In
SIGMOD Record, V.33, No.1, March 2004.

[16] H. Jiang, W. Huang, H. Lu, and J. X. Yu. Holistic Twig
Joins on Indexed XML Documents. In Proceedings of the
29th VLDB Conference, Berlin, Germany, 2003.

[17] V. Josifovski, M. Fontoura, and A. Barta. Querying XML
streams. The VLDB Journal, to appear.

[18] Kanne, C. and Moerkotte, G. Efficient storage of XML data,
ICDE 2000.

[19] Knuth, D. 1968. Semantics of context-free languages. Math.
Syst. Theory 2, 2, 127–145. See also Math. Syst. Theory 5, 2,
95–96, 1971.

[20] B. Ludascher, P. Mukhopadhysy, and Y. Papakonstantinou.
A Transducer-Based XML Query Processor. In Proc. of
VLDB, 2002.

[21] Neven, F. Extensions of Attribute Grammars for Structured
Document Queries. In Proc. 8th International Workshop on
Database Programming Languages (DBPL), pages 99-116,
1999.

[22] Neven, F. and Van den Bussche, J. Expressiveness of
structured document query languages based on attribute
grammars. Journal of the ACM, 49(1):694-718, 2002.

[23] Özcan, F., Cochrane, R., Pirahesh, H., Kleewein, J., Beyer,
K., Josifovski, V., and Zhang, C., et al. System RX: One part
relational, one part XML. In Proceedings of the SIGMOD
05.

[24] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking Forward. In Workshop on XML-Based Data
Management, 2002. Springer LNCS 2490.

[25] Pirahesh, H., Hellerstein, J. M., and Hasan, W.
Extensible/Rule Based Query Rewrite Optimization in
Starburst. SIGMOD 1992, pages 39-48.

[26] Peng, F. and Chawathe, S. XPath Queries on Streaming
Data. In Proceedings of SIGMOD, 2003.

[27] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie,
R. A. and Price, T. G. “ Access Path Selection in a Relational
Database Management System” , SIGMOD 1979

[28] F. Tian, D. DeWitt, J. Chen and C. Zhang, The Design and
Performance Evaluation of Alternative XML Storage
Strategies, ACM SIGMOD Record, 31(1), 2002.

[29] W3C, XML Query related specifications, See
http://www.w3.org/XML/Query

[30] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.
Lohman. On supporting containment queries in relational
database management systems. In Proceedings of SIGMOD,
2001.

[31] Zhang, G. and Zou, Q. QuickXScan: an optimal streaming
XPath algorithm, manuscript available from the author,
2005.

[32] Zhang, N., Kacholia, V. and Özsu, M. T., “ A Succinct
Physical Storage Scheme for Efficient Evaluation of Path
Queries in XML” , ICDE 2004, March 2004.

