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ABSTRACT 
We describe the architecture and some aspects of System R/X, a 
native XML database engine that is built on the same mature 
infrastructure for a relational database and integrated with the 
relational engine. We describe what parts of the infrastructure can 
be reused, what need to be extended, and what are totally new to 
the XML database and their techniques. Our overall strategy is to 
base XML storage and search on the scalable relational 
technology with substantial extensions. Many techniques are 
novel to our knowledge. We also provide perspectives along the 
discussion and point out some open research issues. 

1. INTRODUCTION 
It took about one decade for relational database products to 
mature commercially and become the mainstream database 
management systems. Will XML database products take the same 
time to mature? The answer is maybe no, and maybe yes. The 
decades-long industrial experiences of developing database 
products and huge research and development efforts by both 
industry and academia will no doubt accelerate the maturity of 
XML databases. However, the XML data model and the XQuery 
language  [29] are inherently more complex and more powerful 
than their relational counterparts. This makes solid delivery of 
XML databases ever-more challenging. 

It is a critical part of engineering effort in implementation of 
XML databases to leverage existing database engine 
infrastructure. Furthermore, it is also a customer business 
necessity to integrate XML capability with an existing relational 
product for smooth and incremental adoption of XML database 
technology. 

While there is a large volume of literature on XML support using 
relational databases, we believe that directly mapping XML into 
relational model and translating XQuery into SQL would not 
work well in terms of performance and integrity due largely to the 
hierarchical and flexible nature of the XML data model. In this 
paper, we describe our experiences of extending a relational 
database with native XML support in System R/X. System R/X is 

a sister project of System RX  [23] on the IBM z/OS platform 
targeted at enterprise users with integrated relational and XML 
support. By native XML support, we mean that storage and 
processing of XML data are neither using relational or object-
oriented data model directly, nor using large objects (LOBs), but 
using those specifically designed for XML, including storage 
format, indexing, query processing, and concurrency control, 
among others. 

Indexing is critical to database scalability. System R/X supports 
XPath value indexes. An XPath value index maps the values of 
nodes identified by a path expression from documents to the 
logical positions of the nodes in the documents and physical 
record positions in the storage. XPath value indexes can be used 
to answer efficiently XPath queries with predicates on values. 

One of the interesting features of System R/X is to leverage 
heavily on the data management infrastructure for a relational 
database, and to adapt and extend it for the native XML 
functionality. 

The rest of the paper is organized as follows. First in Section 2, an 
architectural overview is presented, including what are reused, 
what are extended, and what are new. Then in the following 
sections, major new features and extensions are described. In 
Section 3, we describe the storage, data insertion and traversal. In 
Section 4, we describe query processing, including basic scan-
based algorithm and index-based access methods. In Section 5, we 
describe concurrency control issues. In Section 6, we conclude the 
paper and point out the future work. 

2. ARCHITECTURE 
The high-level architecture of System R/X is shown in Figure 1. 
XML services are added in parallel to relational services (e.g. 
searching based on predicates, join algorithms) on the same data 
management infrastructure for relational data that has been tuned 
for decades. The data management features that need no 
enhancement or need minor enhancement include storage (data 
manager, buffer manager, and external storage management), 
catalog and directory, logging, backup and recovery and other 
utilities, instrumentation, etc. It is worth pointing out that to the 
lower level components of the infrastructure, our packed XML 
data looks like rows in relational tables. 

New features in XML services include new data format for XML 
hierarchical data model, XML parsing and validation, XML 
construction and serialization, XML data traversal and XPath 
evaluation, XPath index key generation, and new index-based 
access methods. 
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Figure 1. High-level architecture of System R/X 

Language compiler and query execution are significantly 
enhanced to support compilation, optimization and execution of 
SQL/XML and XQuery languages, including client connectivity, 
distributed facilities, and stored procedures. Index manager and 
lock manager are enhanced to support XPath indexes and 
concurrency of XML operations. In the meantime, we isolate 
XML related processing from existing SQL processing as much as 
possible to avoid making the code too complex to cause 
functional regression and performance degradation of existing 
SQL features. 

Currently, all the manipulation and querying of XML data are 
through SQL and SQL/XML with embedded XPath and XQuery. 
To SQL, XML is just a new data type with a more complex 
content, similar to large objects. Except for the streaming and 
deferred access purposes, all the standard processing flows remain 
largely unchanged for XML, and quite similar to LOBs. 

3. STORAGE OF XML DATA 
3.1 Persistent XML Data 
In SQL/XML, a table can have XML columns. A value for an 
XML column does not have a length limit. In many aspects, XML 
data is similar to LOB data. However, the limited operations for 
LOBs impose significant restrictions on XML subdocument 
update if XML data were stored as LOB. On the other hand, XML 
data trees of the XQuery data model  [29] are similar to objects in 
object-oriented databases. However, many object-oriented 
database storage schemes were not proven to be as scalable as 
relational databases. 

Relational table spaces are well tuned for efficient space 
management, reliability and scalability. They are a natural choice 
to store persistent XML data also. But we are not using a 
decomposition or mapping approach  [9]. Figure 2 shows how 
XML column data can be stored. 

 

Figure 2. Storing XML data using a regular table space 

In our scheme, an internal table space is created for each XML 
column in a base table. The internal XML table is a table that has 
three columns (DocID, minNodeID, XMLData), where the  
XMLData column is a SQL VARBINARY type that contains 
packed XML data to be explained shortly. The minimum node ID 
in XMLData is put in minNodeID, which, together with DocID, is 
used for clustering. A base table with an XML column will have 
an implicit DocID column, shared by all the XML columns in the 
table, and used to link from the base table to the XML table. In 
addition, a DocID index on the base table is used for getting to 
base table rows from XPath value indexes. 

The way XML tree data is packed into records is illustrated in 
Figure 3. In the stored XML data, all the names for elements, 
attributes, and namespaces are encoded using integers across the 
entire database. There are seven kinds of nodes in the XQuery 
data model. Within each packed record, structure nesting is used 
to represent the parent-child relationship between nodes, similar 
to what Natix does  [18]. Each non-leaf node contains the number 
of children (shown in parentheses in Figure 3(b)), followed by the 
child nodes, recursively. Subtree length is also contained in non-
leaf nodes to support efficient tree traversal by using the firstChild 
and nextSibling operations. Assuming the tree is too big for one 
record, we pack a subtree or a sequence of subtrees into a separate 
record, in a bottom-up fashion. A packed subtree is represented 
using a proxy node in its containing record. No explicit physical 
link is used between records for maximum flexibility of record 
placement that is one of the salient features of relational data. 
Instead, logical node IDs are used to link between records through 
a NodeID index that will be explained shortly. 

 

Figure 3. Packing an XML tree into two records 

Each XMLData contains a single subtree or a sequence of 
subtrees that share a common parent node. The parent node is also 
known as the context node for the record. The packed record 
includes a record header that contains the context path 
information, including the absolute node ID, the path from the 
root (a list of name IDs), and in-scope namespaces for the context 
node. Each node contains a relative node ID, as shown next to a 
node in Figure 3(a). Node IDs are prefix encoded  [7] as Dewey 
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IDs in such a way that they are stable upon update of the tree. 
Basically, a relative node ID ends with an even-numbered byte; 
and any odd-numbered byte means that the relative ID is extended 
to the next byte. The absolute node ID of a node is the 
concatenation of relative node IDs along the path from the root to 
the node. The root node ID is an exception, which is always 00, so 
it is implicit in the absolute node IDs. String comparison on the 
node IDs provides document order. And there is always space for 
insertion in the middle by extending the node ID length when 
necessary. The relative node ID of each level can be recovered 
from the absolute node ID. 

A NodeID index is created on each XML table to map a logical 
node ID to its physical record ID (RID). For each contiguous 
interval of node IDs for nodes within a record in document order, 
only one entry is in the node ID index, which is the upper end 
point of the node ID interval. For illustration, there are three 
entries for the two records in Figure 3(b): (02, rid1), (020206, 
rid2), and (020602, rid1), where rid1 and rid2 are RIDs for the 
two records. 

This tree packing scheme makes sense in terms of performance 
when compared with the relational representation of one row per 
node (or edge)  [28]. Assume the storage overhead for each row is 
����������	�
� ����
�����	� ������� ���p, i.e. p nodes per record on 
average, and the average node body size is n. Under the one node 
per record scheme, the storage for a tree of k nodes is: n k + ��k = 
k (n�����
�����������������������n. In comparison, using p packed 
nodes per record scheme, the required storage is about n k�����k/p 
= k (n�����p�
������ ��� ������������ ���np). If we use a node ID 
index for both cases, the one node per record scheme requires k 
index entries, while the packed nodes scheme only requires about 
2*k/p entries or less. 

Now let us consider tree traversal time, assume one relational join 
for each node requires time of t, traversal of a k-node tree with 
one row per node requires time of (k-1)*t (or (k-1)(t + t1), t1 is the 
time of local access within a record, which is much smaller than 
t). For the packed tree scheme, it requires time of kt/p (or kt/p + 
kt1 with local traversal time within a record). The ratio is 
approximately 1/p (assuming t >> t1 and a large k). 

The above analysis shows that the larger the packing factor p, the 
more efficient the storage and tree traversal operations. However, 
there is an upper limit on the record size by the page size, and also 
the counter factor for update overhead. To update one single 
node, under the one row per node scheme, we only need to touch 
storage of one record, with size of n ���, while in the packed tree 
scheme, we will touch storage of ���� pn. However, except for 
larger log spaces required, touching a relatively large size may not 
be too bad, since the I/O unit is a page. 

Some other factors considered in the design of this format are the 
efficiency of the node packing algorithm, easy maintenance of in-
scope namespaces, compression of nodeIDs, skipping subtrees in 
XPath evaluations, simple move and copy operations of subtrees, 
being self-contained when accessed from an XPath value index, 
and  subtree locking and versioning for concurrency control. 

We use a simple size-based grouping method. In comparison, the 
Natix storage scheme uses a complex split matrix mechanism to 
control the grouping, which we do not know how to automatically 
apply in real systems. In addition, we are not clear how Natix 
handles in-scope namespaces and node IDs. 

3.2 Insertion of XML Data 
Insertion of relational data incurs some minor cost of type 
conversion or character encoding conversion. None of these is 
complex compared with insertion of XML data, which requires 
expensive parsing or validation. Application domain interfaces for 
XML, such as SAX or DOM interface, suffer from significant 
overhead of excessive procedure calls for event handling or in-
memory construction of intermediate data structures. To reduce 
the overhead, we use a proprietary parsing and validation 
interface, which is the buffered token stream. The token stream is 
a binary stream of tokens with namespace prefixes resolved, 
namespace and attribute order adjusted, and optionally with type 
annotation if a document is Schema-validated. It is similar to the 
token stream in BEA/XQRL  [10]. Buffering reduces per-token 
procedure call cost significantly. 

In addition, high-performance validation with LALR parser 
generator technique is used for XML schema validation. As 
shown in Figure 4, an XML schema has to be registered before it 
can be used. During the registration, it is compiled into a binary 
format like a parsing table and stored in the catalog. At the 
execution time, the binary schema is loaded and executed by a 
validation runtime to generate a token stream. Both validating and 
non-validating parsers are custom-made for high-performance. 

 

Figure 4. Schema registration, XML validation and parsing 

During tree construction, no separate trees of in-memory format 
are built. Rather, tree-packed records are generated from the 
bottom up in a streaming fashion. Index keys for the node ID 
index and XPath value indexes are generated per record, which 
fits existing infrastructure very well. 

3.3 XPath Value Indexes 
Initial XPath index support in System R/X uses and extends the 
same B+tree infrastructure for relational indexes, and is relatively 
simple. It is our belief that index size should be kept much smaller 
than data size for efficiency, and maintenance of too complex 
indexes can become a bottleneck for high volume systems. 

Users can create XPath value indexes on frequently searched 
elements or attributes by specifying a simple XPath expression 
without predicates, such as “/catalog//productname”, and 
a data type for the key values, such as string (equivalent SQL 
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VARCHAR(n) is used). A few simple types supported, such as 
double, string, and date. Key values are converted from the string 
values of the nodes, identified by the XPath expression. A value 
index entry contains (keyVal, DocID, NodeID, RID), which can 
map a key value to a logical ID (DocID, NodeID) or physical ID 
(RID) in the XML table, or both. A simplified version of our 
streaming XPath algorithm (QuickXScan) is used to evaluate the 
XPath on each record. One major difference of an XPath value 
index to the index manager or utilities maintaining the index is 
that there may be zero, one or more index entries per record, as 
commonly seen in extended indexes, while for relational data, 
there is one-to-one correspondence between an index entry and a 
row.  See Section 4 for the use of XPath value indexes in query 
processing. 

3.4 Traversal of Stored XML Data 
To traverse in document order a persistently stored XML 
document with a given docID value, first the NodeID index is 
searched with (docID, 00) as the key. The root record can be 
identified. The XMLData is then traversed. If a proxy node is 
encountered, its node ID nodeID is used to search the NodeID 
index with (docID, nodeID) as the key to find the RID for the 
corresponding record. Stacking has to be used during traversal. At 
a higher level, the records form a block-based tree, and traversal 
of this tree is also in a depth-first order, with fetch sequence 
matching the clustering order of (DocID, minNodeID). 

When a (docID, nodeID) is given from an XPath value index, to 
find the record containing the corresponding node, use this pair as 
the key on the node ID index, the RID will be returned. Traversal 
inside the record by node ID can find the right node with the 
given nodeID. All the information required by the data model is 
available. The successful search on the NodeID index is attributed 
to the arrangement for the NodeID index keys by using the upper 
end points of NodeID intervals. 

It is worth noting that skipping to the next sibling may result in 
skipping an entire subtree beneath a node, which may contain 
many records. 

4. QUERY PROCESSING 
An input query goes through the typical query processing steps: 
query parsing, semantics and transformation  [25], access path 
selection  [27], plan generation, and execution. 

The XQuery/XPath parser is generated by a LALR(k) parser 
generator  [1], separately from the SQL parser. It is worth noting 
that in our case LALR(1) is used with a much simpler lexical 
scanner than what is described in the W3C specification, achieved 
by rewriting the BNF production rules. Query semantics checking 
and transformation are performed to optimize the query by query 
rewrite. Access path selection is relatively simple at the moment. 
Below we cover some topics related to constructor functions, 
XPath evaluation, and run time organization. 

4.1 SQL/XML and XQuery Constructors 
The constructor functions are to generate XML data. Due to 
known structure of constructors, there is a great opportunity to 
optimize the constructor functions. We use an example to 
illustrate the technique. Assuming we have the following nested 
functions in SQL/XML: 
XMLELEMENT(NAME "Emp", 

   XMLATTRIBUTES(e.id as "id", 

         e.fname ||' '|| e.lname AS "name"), 

    XMLFOREST(e.hire, e.dept  AS "department")) 

It is fairly common to have nested constructor functions due to the 
nature of XML. The standard function evaluation process is to 
evaluate the arguments first, then evaluate the function. If we 
follow the standard steps, it will either involve small data items 
linked by pointers or need multiple copies of the same data items. 

We optimize constructor functions by flattening the nested 
functions into one function and represent the nesting structure 
with a tagging template, as illustrated in Figure 5. In the template, 
the number means which argument to fill in. The result of the 
constructor functions is an intermediate result representation that 
includes a pointer to the template with a data record as shown in 
the bottom of Figure 5. This intermediate result is optimized 
because no repetition of the tagging template occurs, which is 
very effective for generating XML for large number of repeated 
rows or the aggregate function XMLAGG. 

 

Figure 5. Constructor function optimization 

In addition, for XMLAGG ORDER BY evaluation, typical 
external SORT will need to sort each group of rows, suffering 
from significant overhead. We apply in-memory quicksort to the 
linked list representation of rows in each group of XMLAGG, 
achieving high performance. For XML values referenced in the 
constructors (or other functions), a reference construct called an 
XML handle is used. The same techniques apply to XQuery 
constructors, since the variables referenced in XQuery 
constructors are logically components from tuples. 

4.2 XPath Evaluation by QuickXScan 
There are many XPath and XQuery evaluation algorithms 
 [5] [11] [12] [14] [20] [30]. Some are based on relational 
representation and structural joins  [2], which in turn can exploit 
indexes  [16]. However, a base algorithm should have the 
characteristics of a relational scan – it evaluates an XPath 
expression by one pass scan of a document without help from 
extra indexes, and also has similar performance characteristics, 
i.e. not much more expensive than the scan. We have invented an 
optimal streaming XPath algorithm, called QuickXScan  [31] for a 
subset of XPath path expressions that consist of the following five 
forward axes: child, attribute, descendant, self, and descendant-or-
self. The parent axis can also be supported based on query rewrite 
 [24] or minor extension to the base algorithm. 
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Like many other XPath algorithms, such as TurboXPath  [17], 
QuickXScan models a path expression with a query tree. For 
example, a path expression /b//s[.//t = “ XML”  and f/@w > 300] 
can be represented as a query tree shown in Figure 6(a), where r is 
the root step, each node is labeled by the name test or kind test, 
and the axis of each step is differentiated by a single-line edge for 
child axis or a double-line edge for descendant axis to its previous 
step (note that in some cases the descendant-or-self axis can be 
reduced to the descendant axis). 

 

Figure 6. An example query tree and document tree 

QuickXScan is based on the principles of attribute grammars  [19] 
and syntax-directed evaluation  [1]. An XPath expression is 
converted into a set of “ attributes”  in an attribute grammar 
necessary to evaluate the path expression, which is different from 
using explicit attribute grammars to query XML documents 
 [21] [22]. Both inherited attributes and synthesized attributes are 
used. A basic inherited attribute is to determine whether an XML 
tree node matches a query node or not, evaluated during the top-
down traversal of an XML document tree. Non-matched XML 
tree nodes are discarded, while matched XML tree nodes, called 
matching instances (or just matchings), form a logical sub-graph 
(also a tree) of the original XML tree. A typical synthesized 
attribute for a matching instance is to compute the sequence of 
children or descendants under the node, and eventually used for 
predicate evaluation or for deriving the result sequence. Predicate 
pushdown can be achieved by using Boolean-valued attributes. 
Synthesized attributes are evaluated during the bottom-up 
traversal as usual. A set of attributes is associated with each query 
node, but is not shown in Figure 6(a). The XPath evaluation 
reduces to the evaluation of the attribute grammar constructed 
from the XPath expression. 

QuickXScan uses two important transitivity properties among 
matching instances and their attributes. The first transitivity is 
among matching instances. For an XPath expression such as 
//A//B, if a1 and a2 are of ancestor-descendant relationship and 
both match with A, and if b1 matches B and is a descendant of a2, 
then b1 is also a descendant of a1. The second transitivity is for 
sequence-valued attributes. For the matching configuration just 
mentioned, if s1 is a sequence of B descendants of a2, all nodes in 
s1 also belong to the sequence of B descendants of a1. 
QuickXScan uses these two properties to avoid unnecessary 
matching tests and compute sequence-valued synthesized 
attributes incrementally using propagations. 

At the execution time, a logical (horizontal) stack is associated 
with each query node to keep track of matching instances with 
transitivity, as in the Twig Stack algorithm  [6]. During the top-
down traversal of a document tree, each node is matched with one 
or more query nodes. Matched nodes are pushed onto a stack that 
is associated with each query node, and inherited attributes, such 
as count, can be evaluated. To implicitly record the matching 
paths and facilitate attribute value propagation, a matching 
instance has an upward link to the matching instance at the stack 
top of the previous step if it does not share the matching in the 
previous step with its ancestor in the same step. 

Illustrated in Figure 7 is a comparison of matching state between 
QuickXScan and other streaming algorithms  [17] [26] at the time 
when t4 of the document tree in Figure 6(b) is matched with t. 
Only the stack top needs to be checked for matching a node, 
which reduces the number of active states (in term of states of an 
automaton) from potentially exponential (when a path expression 
like //a//a//a matches with a document with recursively nested “ a”  
elements) to the number of query nodes at maximum. 

 

Figure 7. Part of the pattern and matching 

During the bottom-up traversal, nodes are popped off from the 
stacks and synthesized attribute values for matching instances are 
evaluated, including candidate result sequences, which will go 
through filtering by predicates associated in the upper query 
nodes. QuickXScan propagates attribute values among matching 
instances when a matching instance is popped off from a stack. 
Table 1 shows propagation scenarios of basic sequence-valued 
attributes. Propagation can be upward or sideways, or both. 
Duplicate propagations can be avoided if we follow these rules: 

• For b: propagate the value upward if there is an upward 
link or else propagate sideways, and 

• For a: propagate the value sideways and accumulate for 
b descendants of a. 

When there are predicates, the propagation rules become a little 
complex, but we can guarantee no duplicates for a sequence-
valued attribute, see  [31] for details. 

QuickXScan is an optimal streaming XPath algorithm in terms of 
the number of active states and minimum buffer requirements  [5]. 
It needs to maintain O(|Q|*r) matching units at any time in the 
worst-case, where |Q| is the number of query nodes and r is the 
recursion degree of a document, or how many nodes with the 
same name are nested within each other at maximum. The time 
complexity of QuickXScan is O(|Q|*r*|D|) in the worst case, 
where |D| is the document size. Experiments show that it 
outperforms the existing state-of-the-art streaming XPath 
algorithms in both elapsed time and memory consumption, and is 
orders of magnitude better than some DOM-based algorithm. 
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QuickXScan achieved our design goal of linear performance with 
regard to the document size for a subset of XPath expressions in 
practice (because of a small r value). 

Table 1. Propagation of basic sequence-valued attributes 

Path and matchings Path, attributes, and propagations 

 

Path: … a/b 
s: sequence of b children of a 
Init: s1

� ������� �	��

�����
1 is created 

At end of b1: s1 := s1 �  {b1}; // upward 

 

Path: … a/b 
s: sequence of b children of a 
Init: si

� ������� �	��

�����
i is created 

At end of bi: si := si �  {bi}; // upward 
// no sideways propagation for s 

 

Path: … a//b 
s: sequence of b descendants of a 
t: sequence of b descendant-or-self of b 
Init: s1

� ������� �	��

�����
1 is created 

        ti := {bi}; // when bi is created 
At end of b2: t1 := t1 �  t2; // sideways 
At end of b1: s1 := s1 �  t1; // upward

 

Path: … a//b 
s: sequence of b descendants of a 
t: sequence of b descendant-or-self of b 
Init: si

� ������� �	��

�����
i is created 

        ti := {bi}; // when bi is created 
At end of bi: si := si �  ti; // upward 
At end of b2: t1 := t1 �  t2; // sideways 
At end of a2: s1 = s1 � s2; // sideways 

4.3 XPath Evaluation by Indexes 
Although QuickXScan is critical to the system performance, a 
system based on QuickXScan alone will not possess desirable 
scalability, just as a relational database with relational scan only. 
The scalability of database systems largely relies on the efficient 
access methods based on indexes. While special indexes can be 
created to support evaluation of XPath solely based on the 
indexes, these indexes will have to be a complete copy of the base 
data and even larger than the base data, which in our opinion only 
works for read-only documents, due to high index maintenance 
cost. Our approach is to use indexes to quickly identify a small 
subset of candidates and then perform further processing on them. 

For small documents, using indexes to identify qualifying 
documents would be efficient, which we call DocID list access. 
That is, a list of unique DocIDs is returned from an XPath value 
index, and documents are then fetched by using the DocIDs. For 
large documents, the DocID list access is no longer efficient. 
Instead, the NodeID list access applies. Since we do not keep 
complete path information in an XPath value index, when the 
XPath expression of the index contains a query XPath expression 
but is not equivalent to it, we use the index for filtering, and re-
evaluation of the query XPath expression on the document data is 
necessary. When multiple indexes are used to evaluate a single 
XPath expression, we use DocID anding/oring, or NodeID 
anding/oring at document level or node level, respectively. 

Table 2. Access method examples 

Access method Example 

(1) 
DocID/NodeID 
list 

Query: 
‘/Catalog/Categories/Product[RegPrice > 100]’  

Index: 
‘/Catalog/Categories/Product/RegPrice’  as double 

(2) 
DocID/NodeID 
filtering list 

Query: 
‘/Catalog/Categories/Product[Discount > 0.1]’  

Index: 
‘//Discount’  as double 

(3) 
DocID/NodeID 
anding/oring 

Query: 
‘/Catalog/Categories/Product[RegPrice > 100 and 
Discount > 0.1]’  

Indexes: 
(1) ‘/Catalog/Categories/Product/RegPrice’  as 
double 
(2) ‘//Discount’  as double 

Table 2 lists some query and index examples for the access 
methods. When the XPath predicate and value type of the query 
match with the XPath expression and value type of the index, 
DocID/NodeID list access applies, which is illustrated in the first 
case of the table. When the XPath expression of the query is 
contained in the index path expression, the filtering applies, as 
shown in the second case of the table. When two or more 
predicates match with multiple value indexes, anding/oring 
applies, as shown in the third case. If all the indexes match exactly 
with the predicates, the result DocID/NodeID list is exact. If one 
of them is exact match, while the others are containment, NodeID 
level anding will result in an exact list. Otherwise, the result list 
will not be exact but filtering. 

It is worth noting that our value indexes can be viewed as a simple 
version of XPath views  [3]. In implementation, we use decimal 
floating-point number based on the new IEEE 754r for numeric 
value indexing, which provides precise values within its range. 

4.4 Virtual SAX and Runtime Architecture 
Ideally, one single representation, such as the persistent store 
format, should be used for all processing needs. However, due to 
modularity or best-fit to a task, XML data can be in one of the 
many forms during the query processing: token stream, persistent 
store format, constructed format, or in-memory sequence, where 
an in-memory sequence is the result of XPath/XQuery, and 
constructed data can contain any of the other formats. To avoid 
data copying and format conversion cost, we do not construct a 
single unified in-memory tree representation for a task. There are 
three major tasks for XML data in addition to parsing: (1) 
serialization: to generate a serialized XML string for output to 
applications; (2) tree construction: to generate packed records for 
insertion into XML columns; or (3) XPath evaluation: to generate 
an in-memory sequence as result. 

Figure 8 shows how we use virtual SAX to organize the runtime 
components to achieve shared code and pipelining. To perform 
one of the tasks, a proper iterator is attached to the data as the 
input interface according to the data format. As the iterator 
traverses through the data, each input data item is converted into a 
virtual SAX-like event, which is a set of parameters required by 
the routines performing the task. All the routines are shared, and 
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are inlined to avoid actual data copying and procedure call cost, 
thus achieving high performance. 

 

Figure 8. Runtime architecture 

As in traditional relational processing  [13], pipelining is exploited 
whenever possible. However, sometime it is necessary to 
materialize the result. Traditional temporary work files are used 
for relational data. More efficient alternative to work files, 64-bit 
virtual memory, is used for XML temporary data. XML handles 
are widely used to link between relational data and XML data. 
Fetch of persistent XML data is deferred until when it’ s 
necessary. 

5. CONCURRENCY CONTROL 
There has been some recently work on adapting concurrency 
control mechanisms to XML databases, such as path lock  [8] and 
other lock-based protocols  [15]. We can define two concurrency 
levels for XML data, that is, document level concurrency and 
subdocument concurrency. We discuss briefly and provide some 
perspectives here. 

5.1 Document Level Concurrency 
In SQL/XML or XQuery using a base table for a collection, an 
XML column can be viewed as an indivisible unit, the basic level 
of concurrency is at the document level. The isolation levels for 
transactions on relational data can be naturally extended to cover 
XML columns. 

In lock-based document level concurrency, if we follow the access 
sequence from a base table row to the XML column data, the lock 
on the base table can cover the XML data. However, if we allow 
direct access to the XML data from value indexes or from an 
uncommitted reader that does not lock the base table rows, a 
DocID locking scheme is required. For deferred access to XML 
data, DocID locking is also needed. Care must be taken also to 
prevent reading a partially inserted document by using a lock. 

Alternatively, multiversioning can be applied to avoid locking by 
readers, which is more efficient for mostly read workload. To 
support multiversioning at document level, one scheme is to keep 
most up-to-date data for XPath value indexes, but keep versions 
for XML data and the NodeID index required. Without 
versioning, the index entries for a NodeID index contain (DocID, 
NodeID, RID), while with versioning, the entries will also include 

a version number, i.e. (ver#, DocID, NodeID, RID) or (DocID, 
ver#, NodeID, RID), with ver# in descending order. This will 
guarantee a reader’ s deferred access to be successful. 

5.2 Subdocument Concurrency 
In subdocument concurrency, the isolation levels for XML data 
become not so well-defined. Certainly we are only interested in a 
consistent document at certain point of time. 

In lock-based subdocument concurrency, we believe a multiple 
granularity locking  [4] is needed given the hierarchical nature of 
XML data. Since we use prefix-encoded node IDs, locking using 
node IDs can support the protocol efficiently because ancestor-
descendant relationship can be checked by testing if one is a 
prefix of the other. However, with our tree packing scheme for 
storage, a group of nodes form a record and the stored rows 
represents a tree of records. Our study point us to the direction of 
combining logical node ID-based multiple granularity locking 
with multiversioning at subdocument level to make record level 
consistency. 

To support multiversioning at subdocument level, the NodeID 
index entries will have to be different from whole document 
versioning. One of the solutions is to let the index entries contain 
(DocID, NodeID, ver#, RID), where the NodeID may be a real 
interval end point, or a virtual index point without a real 
corresponding version. Details are omitted here. 

Efficient subdocument concurrency control with meaningful 
isolation levels for weaker consistency remains a research area. 

6. CONCLUSION AND FUTURE WORK 
We have described the architecture and various aspects of a native 
XML database that is built on the same infrastructure for a 
relational database engine and integrated with the relational 
engine. This paper is a report of work in progress, with many 
unanswered questions remaining. However, we believe scalable 
native XML database engine can leverage the existing 
infrastructure tremendously, and only need to extend new storage 
scheme, XML-specific operations and query processing, and 
concurrency control when necessary. It is also our belief that at 
least in the near term, it will have a better chance of success to 
extend mature scalable relational storage and technology with 
techniques that follow the same principles that made relational 
databases scalable. These extended techniques include a value-
based storage model, highly efficient QuickXScan XPath 
evaluation algorithm and XPath index-based access methods. 

Our experience also confirms that XML processing is highly 
CPU-intensive, with major contributors being parsing and 
validation, traversal, and serialization, despite our efforts in 
reducing the CPU cost in these areas. 

We also realize that the current implementation of strict XQuery 
data model for XML storage limits its applications to the data-
centric domains. For example, it is not sufficient to store the data 
model alone to achieve byte-for-byte retrieval that is required for 
XML content applications with XML resources. Building full-text 
indexes on top of the XQuery data model, in addition to a LOB-
based original content, would cost too much for such applications. 
An alternative approach would be to use specialized storage for 
efficient query processing  [32], along with an intact copy. Also it 
remains to be seen if it requires new architectural extensions 
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beyond the current scope to efficiently model and implement 
collections and folders with XML. 

Some future work includes tuning of the new extensions, new 
efficient methods (e.g. join order enumeration), and new 
capabilities, such as more complete XQuery and full-text search. 
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