
Combining a Publish and Subscribe Collaboration
Architecture with XQuery Approaches

M. Brian Blake
Department of Computer Science

Georgetown University
Washington, DC, USA

blakeb@cs.georgetown.edu

David H. Fado and Gregory A. Mack
Advanced Systems and Concepts

Science Applications International Corp. (SAIC)
Arlington VA, USA

{David.H.Fado, Gregory.A.Mack}@saic.com

ABSTRACT
Markup languages, representations, schemas, and tools have
significantly increased the ability for organizations to share their
information. Languages such as the Extensible Markup Language
(XML) provide a vehicle for organizations to represent
information in a common, machine-interpretable format.
Furthermore languages, such as the Document Type Definition
Language (DTD) and XML Schema Definition Language (XSD)
allow organizations to share the schema and structure of their
data. Though these approaches facilitate the collaboration and
integration of inter-organizational information, the reality is that
the schema languages are reasonably difficult to learn, and
automated schema integration (without semantics or ontology
mappings) is currently an open problem. We introduce an
architecture to facilitate organizational collaboration. In this
paper, we introduce such an architecture that combines the push
features of the publish/subscribe protocol with distributed registry
capabilities. In addition, a Java-based, service-oriented
implementation entitled Sharx is described and evaluated.

Categories and Subject Descriptors
D.2.11 [Software]: Software Engineering: Software Architectures
– domain-specific architectures.

General Terms
Design, Experimentation, Standardization, Languages

Keywords
Distributed and heterogeneous information management,
management of semi-structured data

1. INTRODUCTION
Web data can be defined as a form of data marked-up for Web
use, sometimes also called semi-structured data. XML is a
markup language that provides a universal format for
organizations to represent their underlying web data. Objects in
XML data are specified using elements. A list of elements and
their attributes represent the fundamental structure for defining an

XML schema. A major problem occurs when two organizations
develop their schemas independently and produce different XML
schemas for essentially the same data or capability. In the future
when these organizations need to merge their capabilities, there is
a requirement for schema integration. Although there are
modeling approaches that facilitate integration [17], the idea of
schema integration without context information or semantics is an
open problem. In fact, automated tools for schema integration,
when semantics are not present, are practically nonexistent, and
human-intervention and organizational collaboration are required.

Instead of addressing the problem of schema integration first, we
believe the initial step should be creating a seamless
organizational collaboration environment which will facilitate
web data sharing. Although registries [9] have typically
facilitated data sharing, they lack the capability of real-time
distribution of data. We introduce an architecture that extends
standard registry capabilities with an integrated messaging
infrastructure. Furthermore, the architecture supports a suite of
graphical services that allow users to create, store, and activate
XML query instructions on the web data prior to distribution. This
architecture can serve as a first enabling step towards a fully-
automated collaboration architecture, perhaps employing
ubiquitous, agent-supported technologies. In the next section, the
usage of the architecture is discussed in an applied setting. Also,
the necessary modes of operation are discussed. In Section 3, the
related works are discussed. In Section 4, the design of the new
architecture is described in detail. The subsequent sections
discuss the SHARX implementation and its operations. The final
section summarizes our conclusions.

2. INTELLIGENCE SHARING SCENARIO
The major innovation of the proposed publish and subscribe
collaboration architecture is the ability for the implemented
system to stand-alone. This approach is similar to peer-to-peer
(P2P) frameworks [1] with respect to the ease of operational use.
The sponsoring organization provides the web-accessible
machine, but by the nature of the publish/subscribe paradigm, the
distribution architecture should operate independently. This
approach also extends the P2P approach by enabling machine-to-
machine capabilities. General machine-to-machine interfaces can
enable the delivery of distributed information directly to local
software services.

2.1 A Domain-Specific Scenario
Under the sponsorship of the Air Force Research Lab (AFRL),
new infrastructures, that support information sharing and
advanced analytical collaboration, are being created to support
intelligence analysts. Many companies and universities are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

creating intelligence tools containing analysis information and
complex models. These tools publish assets in some form of
structured mark-up language. A major challenge in this domain is
making these assorted capabilities available on a single analyst
desktop.
As an example, intelligence analysts typically issue or receive
urgent requests for information. These requests spur the
formation of a team of perhaps a dozen relevant experts who must
construct accurate responses in a short period of time. Due to the
nature of this domain, the composition of these communities of
interest will evolve as intelligence needs change and the cognitive
support tools employed will vary according to the shifting group
membership. Such a dynamic environment cannot rely on a strict
schema applied to all analysts without undermining the capability
to bring in new users, new points of views, and new tools. One
key to facilitating collaboration in a dynamic environment is the
capability of comparing schemata without merging them, thereby
exposing different perspectives among members of the
community of interest. The knowledge of varying perspectives
accelerates team formation by exposing potential points of
miscommunication.
Currently, the team formation and processes are relatively ad-hoc.
Using the proposed architecture, an analyst will employ a
principled approach using his/her desktop to create and participate
in an on-demand, virtual community of interest. The proposed
architecture supports advanced collaboration by providing data
sharing as a first step so that the differences of the schema and the
subsequent merging activities can be included as part of the
community of interest definition.

2.2 Steps for Deployment
In order for this collaboration architecture to be adopted, there is a
critical requirement that deployment steps be straight-forward and
effortless. Therefore, an essential part of specifying the
architecture is also specifying deployment steps. Any
implemented system must comply with the deployment steps
listed below.

1. A sponsoring organization establishes a web-accessible
server machine with adequate processing capabilities.

2. The collaboration environment is created on the
machine.

3. Through automated means, the main interface of the
system is immediately available.

4. Automated processes pre-configure client components
and add local web links to enable providers and
requesters to download the components.

5. With exception to server back-up and maintenance, the
application should run independently. The sponsor
administers the server and is also a user of the system
(i.e. provider and/or requester).

3. RELATED WORK
Although there are projects that address XML schema integration
[17][14], these projects do not focus on creating distributed
infrastructures that enable inter-organizational information
collaboration. This area, as described in Section 1, is generally
divided into two technologies, registry infrastructures and
messaging frameworks. There are several registry applications

that help organizations store and share their information
represented in XML, WSDL, SOAP, etc. Specifications such as
Universal Description, Discovery, and Integration (UDDI) and
OASIS ebXML, describe registry frameworks for storing the
aforementioned representations. There are many applications that
implement these specifications, jUDDI [11], XML.org , to name a
few. These specifications and tools, however, do not support the
distribution of the underlying instance information.

There are other messaging approaches that support the
distribution of web data. Applications such as JAX-RPC [10] and
WebSphere (formerly XML MQSeries) [27][28], support the
transport of web data however collaboration of schema
information is not supported, but used only for validation. In
some cases, schema information is used, but only for validation.
These applications tend to be tightly coupled, and they do not
support an asynchronous publish and subscribe protocol [3].

There are other technologies that address both areas of
advertisement and distribution, but not with the completeness of
the approach introduced here. JAX-R [9] is a XML registry that
can be combined with JAX-RPC to enable both the storage and
distribution information. This framework does not support an
asynchronous environment. In addition, publish and subscribe
features are limited to the schema information and not to the
instance data. AT&T’s Web Services Connect [26] is an
architecture for integrating data across organizational boundaries
but, according to recent specifications, it requires human-driven
customization. KnowNow[13] has an architecture that supports
the publish and subscribe features, however it is limited to
information presented on web pages. Using embedded scripting
and a shared server, organizations can receive the web-based data
changes in real-time. KnowNow, however does not focus on the
storage features. No other research project, technology, or
application meets all the requirements of storage, asynchronous
messaging, querying, and customization.

 Another related area to address schema integration is the work of
the semantic web [12][5]. However, this line of research mostly
supports semantic matching technologies using ontological
approaches. Describing semantic web approaches in detail is not
in the scope of this paper. However, it is important to note that
the architecture introduced in this paper is intended to act as an
infrastructure to support future semantic web approaches.

4. A PUBLISH/SUBSCRIBE
COLLABORATION ARCHITECTURE
In this section, the general design and anticipated operations of
the new architecture are discussed in detail.

4.1 Architectural Design
The publish/subscribe collaboration architecture can be discussed
in terms of server-side modules and client-side modules as shown
in Figure 1. The server contains the core functionality of the
system for configuration. A provider organization can register
with the system by providing a schema or a specific type of web-
based information using the graphical user interface service. Also
using the graphical user interface, a new requester organization
can subscribe to the instance data (based on pre-registered
schemas) as it is populated on the server. All registration
information is stored in the user account information and markup

schemas and query instructions partitions of the server-side data
repository. The requester can choose to receive complete data
files or a subset of the web-based data. In choosing a subset, the
publication and subscribe configuration services capture and
store the query instructions for that requester in the data
repository.
During regular operations, web-based information is distributed in
real-time. This distribution of information requires interface
modules on both the client-side and server-side. On the client-
side, there are two modules that package and unpackage the
instance data for transmitting to and receiving from the server.

There is a human-driven module, human user interface service,
and a module that enables machine-to-machine interface,
application interface service. Also enabling distribution is a
server-side distribution service, machine-to-machine interface
service. At operations time, provider organizations will transmit
instance data regularly and the distribution services will
propagate the subscribed data to requesters while recording the
transactions in the data repository (transactions and instance
information). At times, parsing and query services can be used to
process the distribution.

M a c h in e - t o -
M a c h in e
In t e r f a c e
S e r v ic e s

R e g is t r y S e r v ic e s

P u b l is h /S u b s c r ib e
C o n f ig u r a t io n

S e r v ic e s

D is t r ib u t io n S e r v ic e s

Q u e r y a n d P a r s in g
S e r v ic e s

C o n f ig u r a t io n - T im e
a n d O p e r a t io n - T im e

C o n n e c t iv i t y

S e r v e r M o d u le s
C l i e n t

M o d u le s

H u m a n U s e r
In t e r f a c e

C o m p o n e n t

U s e r A c c o u n t
In f o r m a t io n

M a r k u p
S c h e m a s a n d

Q u e r y
In s t r u c t io n s

T r a n s a c t io n s
a n d In s t a n c e

D a t a

G r a p h ic a l
U s e r

In t e r f a c e
S e r v ic e

D a t a R e p o s i t o r y

A p p l ic a t io n
In t e r f a c e

C o m p o n e n t

Figure 1. High-Level Publish/Subscribe Collaboration Architecture.

5. SHARX: AN IMPLEMENTATION
In order to validate the publish and subscribe collaboration
architecture, a prototype was created. The prototype is a service-
oriented, component-based system that leverages technologies
such as Java-based web services, XML querying software, a
relational database, and web server packaging techniques. The
implementation is entitled Sharx (i.e. derived from SHARe
XML). In this section, the Sharx implementation and its
operational usage is discussed in great detail.

5.1 Sharx Component-Based Implementation
In order to facilitate future evolution, Sharx was implemented as a
set of autonomous components. For the purpose of this paper, we
discuss the five major high-level components, although it should
be noted that several of the components can be decomposed
further. The five major components are the graphical user
interface component, the distributed transmission component, the
client proxy component, the collaboration processing component,
and the data management component. The Sharx system diagram
is shown in Figure 2.
In general, the Sharx architecture is a database-centered
architecture. The system control instructions are stored in the
database along with the user, schema, and instance information.
The data management component manages the data requests for
all of the other remaining components. All information and
requests within the server and among Sharx clients are
transmitted as pre-established communication objects. The use of

pre-established objects promotes the creation of clean component
interfaces. The data management component is incorporated into
each of components. By routing all information requests through
the data management component as communication objects, the
system is easily evolved to any new registry or relational database
in the future. Since each component communicates to the
database for control and information requests, the architecture can
easily evolve at run-time when the addition of new components is
required. The following subsections discuss each of the Sharx
components and their underlying technologies in detail.

5.1.1 Data Management Component and Database
As discussed in the previous section, the data management
component is the only component that connects directly to the
data repository. Other components embed the data management
component and utilize the data communication functions by
passing communication objects. The data management
component is implemented in the Java programming language and
consists of a data repository with the MySQL relational database
and the JAXR registry. In the initial version, all information was
stored in MySQL, although software was created to extend the
JAXR application. In future work, the user and system control
information will be stored in a relational database while the
schema information will be stored in the registry.
The Sharx database is separated into three distinct but integrated
areas. The three areas are System Control Information, User
Configuration Information, and Transactional Information as
shown in Figure 3.

Figure 2. Sharx System Diagram.

W orkflow Tasks

U ser

P rovider

R equester Q uery_
Instruction

W eb_D ata

Transaction Transm iss ion

S ystem C ontro l In form ation

Transactional In form ation

U ser C onfiguration In form ation

1.

2 .

3 .

Figure 3. Sharx High-level Database Structure.

System Control Information consists of entities that describe the
workflow-based operation of the components when a new request
is received. Every organization that connects to the Sharx system
is specified as a user in User Configuration Information. As users
register their data schemas and frequency of delivery, they are
further specified as providers. As users subscribe for existing
data, they are specified as requesters. Requesters can have
parsing and querying instructions as specified in the
query_instruction entity. Finally, records of incoming requests
are stored in the Transaction Information

5.1.2 Graphical User Interface Component
Sharx has a server-side graphical user interface where users can
register to the system and submit their web data. The user
interface was implemented using Java Servlets. A screenshot of
the servlet-generated web page is illustrated in Figure 4.

5.1.3 Collaboration Processing Component
The collaboration processing component contains two underlying
components, a matching component and an embedded XML
query component. The matching component is implemented in the
Java programming language. The AT&T XML-QL software [29]
is embedded into a query component to perform the query on the

incoming instance data. Although XQuery is the current approach
for XML query, XML-QL was chosen for this initial prototype
because of availability [2]. In later experiments the query building
capability will be expanded to XQuery-based implementations.
The collaboration processing component uses both the matching
and query components to produce a list of distribution instructions
later used by the distributed transmission component when
sending the resulting information to requesters.

Figure 4. Sharx Main Web Page.

5.1.4 Distributed Transmission and Client Proxy
Components
The distributed transmission and the client proxy components
meditate all communication between the Sharx server and clients.
Both server and client machines must contain a compliant web
server, such as Apache. The distributed transmission and client
proxy components are 2-way web services. These components
are registered on the web server and can both send and receive
communication objects embedded in SOAP messages. These
components are Java-based web services implemented with JAX-
RPC [10] software included in the Java Web Services Developer
Pack.

5.2 Sharx System Operations
The Sharx system contains automated capabilities to assure the
ease of deployment. All of the Sharx components are packaged
together as one module in a Simple Web ARchive (WAR) file
[21]. The Tomcat web server can automatically unpackage war
files and install the Java software upon restart. The Sharx
deployment procedure capitalizes on this automated feature. A
new sponsor can deploy the Sharx system by simply placing the
Sharx.war file in a specified location and restarting their web
server. An additional automated script captures the IP address of
the server and pre-configures the client proxy components. The
deployment steps are summarized in Figure 5.

Web Server

Sharx.war
File

1. Sponsor puts war file in
designated directory and

restarts web server

Web Server

2. Automated
Configuration

Expand and install Sharx
Components, XML-QL, and
web service interface files.

Locate IP address and
configure client proxy
component.

Client
Web Server

3. User Login and
Configuration

Web Server

Login/Register to Sharx

Sharx
Web
Page

Download clientProxy.war

Place clientProxy.war file
into specified directory and
restart the web server for
automated configuration.

Save Client IP
address to the
Data Repository

Figure 5. System Deployment Steps.

5.3 Building Query Instructions
Although Sharx embeds the XML-QL software as a component,
custom software was created (i.e. collaboration processing
component) that displays the XML schema so that a requester can
develop query instructions. When a user logs into Sharx and
subscribes for an XML file, the user is given the opportunity to
subscribe to the instance data as it is received or to request a
subset of the data. Implemented in the collaboration processing
component is a hierarchical graphical display of the XML
schema. In initial development, the collaboration processing
component focuses on XSD. A sample XSD file is represented in
text and graphical form in Figure 6. In addition, sample instance
data is shown. The XSD represents information about a list of
books and the underlying characters in those books.
Hypothetically, another organization may be interested in new
books that contain only specific characters. In such cases, the
other organization may only need the book title and author and
may not require the additional character information such as
friend-of, since, and qualification.

Also in Figure 6, the web page resulting from the Sharx
collaboration processing component is displayed. In this web
page, a user subscribes to a specific subset of data included in the
original XML file. The user can select specific elements using
the checkboxes to the left of each element. In lower portion of
Figure 6, the book, title, author, character, and name elements are
chosen. Using the textbox to the right of the name element, the
figure shows that the resulting XML file will contain books with
the character, Snoopy. It is not in the scope of this paper to
describe the XML query language in great detail, but the
specification can be found at [29]. The Sharx collaboration
processing component generates an XML query file based on the
XML-QL specification as shown in Figure 7. The resulting XML
instance data is also shown in Figure 6.

6. DISCUSSION
Probably the most closely related architecture work in the area of
assisting human collaboration for schema integration was the
blackboard system introduced by Ram et al. [18]. Ram
introduces a black-board system for integrating relational
schemas. This work is related by nature of the support for human
collaboration. The Sharx approach relies on technologies that
push information to the stakeholders, where as the blackboard
approach relies mostly on human-driven collaboration. By
addressing schemas for web data, Sharx addresses a different
domain than that of relational schemas. Other approaches use
publish/subscribe architectures for collaboration on mobile
devices [4][6]. These approaches concentrate on smaller lookup
queries but do not address large-scale collaboration on web data.
The authors understand that the contributions of the investigations
in this paper are applied by nature. Moreover, the major
innovation of this work is the introduction of a new collaboration
architecture that capitalizes on recent paradigms and technologies.
We believe this architecture represents a uniquely innovative
combination of approaches to assist in the human collaboration of
web-based data. By implementing the Sharx operational prototype
consisting of current leading technologies, the approach was
validated.

7. ACKNOWLEDGMENTS
A significant portion of the SHARX implementation was
developed by undergraduate students of the spring 2004 offering
of COSC 346 Software Engineering II at Georgetown University,
Washington DC. The students are Ian Costello, Jeffrey Hole,
Steve Perlow, and Rana P. Kashyap. AT&T’s XML-QL
application was used to implement a portion of the XML querying
capability. Micardo Johns of AEG Capital, Washington DC
helped to motivate the problem of data sharing in the domain of
student finance. We also acknowledge conversations with Dr. Leo
Obrst and Dr. Len Seligman.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="character" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="friend-of" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="since" type="xs:date"/>
 <xs:element name="qualification" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="isbn" type="xs:string"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

<?xml version="1.0" encoding="utf-8"?>

<book isbn="0836217462">
 <title>Being a Dog Is a Full-Time Job</title>
 <author>Charles M. Schulz</author>
 <character>
 <name>Snoopy</name>
 <friend-of>Peppermint Patty</friend-of>
 <since>1950-10-04</since>
 <qualification> extroverted beagle </qualification>
 </character>
 <character>
 <name>Peppermint Patty</name>
 <since>1966-08-22</since>
 <qualification>bold and tomboyish<qualification>
 </character>
</book>

XSD Schema

Graphical Schema
Display (.Net) XML Instance Data

function query($db) {
construct <book>
 <title>$title</>
 <author>$author</>
 <character>
 <name> $name </>
 </character>
 </book>

where <book>
 <title>$title</>
 <author>$author</>
 <character>
 <name> "Snoopy" </>
 </character>
 </book>
 </> IN source($db)
}

<?xml version="1.0" encoding="utf-8"?>
<book isbn="0836217462">
 <title>Being a Dog Is a Full-Time Job</title>
 <author>Charles M. Schulz</author>
 <character>
 <name>Snoopy</name>
 </character>
</book>

Sharx GUI for Query Generation

Resulting XML-QL Query Files Resulting XML Instance Data

Figure 6. XML Sample, Sharx Query Instruction Generation Page, XML-QL Query File, and Resulting Instance Data.

8. REFERENCES
[1] Aberer, J. P-Grid: A self-organizing access structure for P2P

information systems. In Proceedings of the International
Conference on Cooperative Information Systems (CoopIS),
Trento, Italy pp. 179–194, 2001.

[2] Boag,S., Chamberlin, D., Fernandez, M., Florescu, D.,
Robbie, J., Simeon, J., and Stefanescu, M. XQuery 1.0 : An
XML Query Language (XQL). Technical Report, W3C,
April 2002. Available from http://www.w3c.org/TR/xquery

[3] Busi, N. and Zavattaro, G. Publish/Subscribe vs. Shared
Dataspace Coordination Infrastructure: Is it Just a Matter of
Taste, In Proceedings of the 10th IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2001), Boston,
Massachusetts, 2001.

[4] Cugola, G. and Nitto, E.D. Using a Publish/Subscribe
Middleware to Support Mobile Computing. In Proceedings
of the Workshop on Middleware for Mobile Computing
(Hiedelburg, Germany), Nov. 2001

[5] Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein,
M., Broekstra, J., Erdmann, M., Horrocks, I. The Semantic
Web: the Roles of XML and RDF. IEEE Internet
Computing, 4 , 5 (Sept-Oct 2000) 63-73

[6] Fenkam, P., Kirda, E., Dustdar, S., Gall, H., Reif, G.
Evaluation of a publish/subscribe system for collaborative
working. In Proceedings of the 11th International
Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE 2002), June, IEEE
Computer Society Press.

[7] Fensel, D., Hendler, J.A., Lieberman, H. and Wahlster, W.
Spinning the Semantic Web. MIT Press, Boston, MA, 2002.

[8] GoXMLTM Registry and Messaging, Xenos Corporation
(2004):
http://www.xenos.com/solutions/prod_goxml_registry.asp

[9] Java API for XML Registries (JAXR) (2004):
http://java.sun.com/xml/jaxr/index.jsp

[10] JAX-RPC (2004): http://java.sun.com/xml/jaxrpc/index.jsp
[11] jUDDI, Apache Project (2004): http://ws.apache.org/juddi/
[12] Klein, M. Intepreting XML documents via an RDF schema

ontology. In Proceedings of the 13th International Workshop
on Database and Expert Systems Applications (September
2002) 889-893

[13] KnowNow (2004): http://www.knownow.com/
[14] Losio, B.F., Salgado, A.C., and Luciano, R.G. Conceptual

Modeling of XML Schemas. In Proceedings of the 5th ACM

International Workshop on Web Information and Data
Management (New Orleans, LA November 2003) 102-105

[15] OASIS ebXML Registry Specification (2004):
http://www.oasis-
open.org/committees/regrep/documents/2.5/specs/ebrs-
2.5.pdf

[16] OWL-S (formerly DARPA Agent Markup Language for
Services (DAML-S)) (2004):
http://www.daml.org/services/owl-s/

[17] Passi, K., Lane, L., Madria, S.K., Sakamuri, B.C., Mohania,
M.K., and Bhowmick, S.S. A Model for XML Schema
Integration. In Proceedings of the 3rd International
Conference on E-Commerce and Web Technologies (EC-
Web 2002) (Aix-en-Provence, France, September 2-6, 2002)
Springer-Verlag, Berlin 193-202

[18] Ram, S. and Ramesh, V. A blackboard-based cooperative
system for schema integration. IEEE Expert, 10 , 3 (June
1995) 56 – 62

[19] Sharx (2004) :
http://www.cs.georgetown.edu/~sharx/index.html

[20] Simple Object Access Protocol (SOAP) (2004):
http://www.w3.org/TR/soap12-part0/

[21] Simple Web Archive File (2004):
http://access1.sun.com/techarticles/simple.WAR.html

[22] The Sharx Prototype (2004) :
http://www.cs.georgetown.edu/~sharx

[23] Universal Description, Discovery, and Integration (UDDI)
(2004) http://www.uddi.org/

[24] Web Ontology Language (2004) :
http://www.w3.org/TR/owl-features/

[25] Web Services Description Language(WSDL) (2004):
http://www.w3.org/TR/wsdl

[26] WebServices Connect, AT&T (2004):
http://www.att.com/abs/serviceguide/docs/wcs_sg.doc

[27] Websphere MQ Family (2004): http://www-
306.ibm.com/software/integration/mqfamily/

[28] Wolfson, D. and Tong, M. DB2 MQ Functions: Using
MQSeries and XML Extender from DB2 Applications. IBM
DeveloperWorks, 2004, http://www-
106.ibm.com/developerworks/db2/library/techarticle/wolfson
/0201wolfson.html

[29] XMLQL, AT&T (2004):
http://www.research.att.com/sw/tools/xmlql

