
Deep Set Operators for XQuery

Bo Luo Dongwon Lee Wang-Chien Lee Peng Liu
Penn State / IST Penn State / IST Penn State / CSE Penn State / IST
bluo@ist.psu.edu dongwon@psu.edu wlee@cse.psu.edu pliu@ist.psu.edu

ABSTRACT
There are three set operators defined in XQuery, namely
union, intersect and except. They take node sequences
as operands, in which each node is identified by its node-ID
and treated as an atomic entity. However, according to XML
semantics, each node is “a set of set(s)”, which have de-
scendants in a tree-structured hierarchy. Unfortunately, the
regular set operators as described above ignored this struc-
tural feature of XML data. On the other hand, some XML
applications can be benefited from set operators with differ-
ent semantics considering ancestor-descendant relationships
between nodes. In this extended semantics, the comparison
during query processing are conducted not only on nodes of
both operands, but also on their descendants, in a “deep”
manner. In this paper, we identify the needs of such “deep”
set operators and propose the deep-union, deep-intersect
and deep-except operators. We further explore their prop-
erties as well as relationships to regular set operators, and
present a preliminary experience on implementing them as
user-defined functions of XQuery.

1. INTRODUCTION
In recent years, the eXtensible Markup Language (XML) [3]

has emerged as the de facto standard for storing and ex-
changing information. As such, the needs arise to query
and tailor information in XML documents for various re-
quirements in a more flexible and powerful manner. Towards
this goal, XQuery [2] was developed by two W3C working
groups to serve as the standard XML query language. In
[2] and [5], three set operators are defined, namely union,
intersect and except. First, in [2], they are defined as:

• “The union and | operators are equivalent. They take
two node sequences as operands and return a sequence
containing all the nodes that occur in either of the
operands.”

• “The intersect operator takes two node sequences as
operands and returns a sequence containing all the nodes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
XIME-P ’05 Baltimore Maryland, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Figure 1: Tree structure of an XML document.

that occur in both operands.”

• “The except operator takes two node sequences as operands
and returns a sequence containing all the nodes that oc-
cur in the first operand but not in the second operand.”

Second, according to [5], the set operators of XQuery are
defined using the notion of node-IDs – unique (conceptual)
ID per XML node. Therefore, for instance, the “union”
of two node sequences are the union of node-IDs from both
sequences. On the other hand, XQuery uses XPath [1] to lo-
cate nodes. As defined in XPath, once the query is processed
and the final node-IDs, say {5, 7}, are found, the answer to
be returned to the user is the entire subtree rooted at the
node with IDs 5 and 7. For instance, Figure 1, an XPath
expression “//person” represents all the subtree rooted at
<person> node (subtree 1), and “//person/name” represents
the whole subtree rooted at “<name>” node (subtree 2),
which is hierarchically nested as a subtree in subtree 1.

In addition, the set operators defined in XQuery only re-
quire two operands to be “node sequences” without any fur-
ther requirements on their comparability. Therefore, two
operands may be sequences of nodes at different level, or
even nodes from mixed levels. For instance, in the expres-
sion “//person union //name”, two operands contain differ-
ent nodes, <person> and <name>, and are thus incompara-
ble regarding their semantics. In the relational model, this
kind of union is not valid because of incompatible domains.
However, XQuery accepts this query and would return a
sequence of mixed nodes, <person> and <name>. Conse-
quently, the “regular” set operators defined in XQuery are
more flexible than their counterparts in the relational model,
but they sometimes generate confusing semantics. In partic-
ular, we have observed that some XML applications would
have been benefited greatly if there are “novel” set operators
with different semantics in XQuery. Consider the following
two motivating examples.

 <person id="person6">
 <name>Moheb Mersereau</name>
 <emailaddress>mailto:Mersereau@umass.edu</emailaddress>
 <creditcard>4462 9674 4373 8450</creditcard>
 </person>

person

 <person id="person6">
 <name>Moheb Mersereau</name>
 <emailaddress>mailto:Mersereau@umass.edu</emailaddress>

 </person>

person

(a): a complete “person” node (//person)

(b): a partial “person” node (//person deep-except //person/credicard)

creditcard

creditcard

Figure 2: An example of deep-except semantics

Example 1 (XML Access Controls). In [8], we proposed
an XML access control enforcement method that re-writes
users’ incoming query Q to a safe query Q′ such that all frag-
ments in Q that are asking for illegal data access are pruned
out. In this context, conceptually, the safe query is either
(1) “intersect” of Q and what users are granted to access
(i.e., positive access control rules), or (2) Q “except” what
users are prohibited to access (i.e., negative access control
rules). That is, if Q is //person, but a positive access control
rule grants only the data matching //person/name[age>18],
then users must have an access to the data that are the
intersect of //person and //person/name[age>18]. However,
the expression using the regular intersect operator, “//per-
son intersect //person/name[age>18]” would return NULL
since no node-IDs from //person and //person/name[age>18]
match. What is desirable here is, thus, a novel “intersect”
operator that compares operands to check their structural
overlap in a deep manner, and returns the overlapped region.
That is, “//person deep-intersect //person/name[age>18]”
should return the nodes matching //person/name[age>18]
since it is completely nested in //person.

Symmetrically, for negative access control rules, we need
novel deep-except operator. For instance, if a user issues a
query //person but a negative access control rule prevents
her from accessing the data matching //person/creditcard,
then what she can really access is the data matching the ex-
pression “//person deep-except //person/creditcard”. Again,
the regular except operator, if used, would have resulted
wrong semantics. Figure 2 illustrates the above semantics
of deep-except: (a) shows two <person> nodes in their
original form, while (b) shows the expected output of the
“deep” query “//person deep-except //person/creditcard”.

Example 2 (Database as a Service). In recent proposal
to use database as a service model [6], query and data are
delivered over to the database site which processes the query
and returns answers back to users. Furthermore, XML data
may be gathered and stored in a non-replicating fashion. A
small company A that has branches in LA and NY may store
different but partly overlapping XML data in both branches.
When analysis needs to be done, the company ships query
and two snapshots of XML data to 3rd party company B
that provides database-as-a-service. For instance, the com-
pany A wants to gather aggregated statistics over items that
were sold in 2004, and may request names of all items in the
LA branch to be sent to B, while requesting complete item

information of Northern America to be sent to B. That is,
what B will receive is the “merged snapshot” of //item/name
and //namerica/item. Like Example 1, this cannot be han-
dled by the regular union operator, and can only be coped
by introducing the novel deep-union operator as follows:
“//item/name deep-union //namerica/item”. 2

2. RELATED WORK
In [4], “deep union” and “deep update” operators are

proposed to process semi-structured data. This operator
takes two edge-labeled tree-structural documents as input
and merges/updates them based on their structural similar-
ities.

In [9], a deep-equal function is introduced to check the
equality of two sequences. It checks if the arguments contain
items that are equal in values and positions. Despite the
same name, their deep operators (functions) are different
from ours in semantics or underlying operation objects.

In [7], TAX algebra is proposed for tree-structured data,
in accordance with the relational algebra for relational data.
TIMBER [10] is developed based on this algebra.

As we illustrate above, there are needs for novel set opera-
tors with enhanced semantics than regular set operators. In
this paper, we explore this issue of deep set operators. The
remainder of the paper is organized as follows. In section
3, we define deep set operators and illustrate them with ex-
amples. Section 4 proposes their properties and comparison
with regular set operators. Section 5 describes the algo-
rithm of our implementation of three deep set operators,
and in Section 6 we provide our experiment results.

3. FORMAL DEFINITIONS
We first give precise formal definitions of three novel deep

set operators, followed by illustrative examples.

3.1 Definitions
First, we denote node sequences as P = {p1, ...pn} and

Q = {q1, ...qn}, where pi and qi are XML nodes, identified
by node-IDs according to XQuery semantics [5]. And the
enumeration of the nodes and all their descendant nodes as:

Pd = P/descendant− or− self :: ∗
Qd = Q/descendant− or− self :: ∗

Definition 1 (deep-union) deep-union operator (
D
∪) takes

two node sequences P and Q as operands, and returns a se-

quence of nodes (1) who exist as a node or as a descendant
of the nodes in “either” operand sequences, and (2) whose
parent does not satisfy (1). Formally,

P
D
∪Q = {r|(r ∈ Pd ∨ r ∈ Qd) ∧

(r :: parent() 6∈ Pd ∧ r :: parent() 6∈ Qd)} 2
In the above definition, condition (1) represents the founda-

mental semantics of deep union operator: compare not only
nodes in operand node sequences but also their descendants;
(2) serves as a supplement: when a node satisfies condition
(1), all its descendants also satisfy condition (1), thus we
wanted to eliminate the descendants and keep the “greatest
common node” only 1. Condition (2) is directly expressed
as:

! (r :: parent() ∈ Pd ∨ r :: parent() ∈ Qd)

According to De Morgan’s Law, it is equal to:

(r :: parent() 6∈ Pd ∧ r :: parent() 6∈ Qd)

Similarly, we have

Definition 2 (deep-intersect) deep-intersect operator

(
D
∩) takes two node sequences P and Q as operands, returns a

sequence of nodes (1) who exist as a node or as a descendant
of the nodes in “both” operand sequences, and (2) whose
parent does not satisfy (1). Formally,

P
D
∩Q = {r|(r ∈ Pd ∧ r ∈ Qd) ∧

(r :: parent() 6∈ Pd ∨ r :: parent() 6∈ Qd)} 2

To formally define deep-except, we first need to define
the deep-except-node operator. W3C XPath [1] standard
limits the connection of any two nodes be in one (or more)
of the twelve axis. For any two given nodes, we can further
categorize their relationship into three classes: (1) they are
identical, (2) they are ancestor-descendant, or (3) there is
no overlap between them (including sibling, etc.). In other
words, two nodes cannot be “partly overlapped”. Then we
define the deep-except-node operator as:

Remark 1 deep-except-node operator takes two nodes as
operands, processes them according to the following condi-
tions: (1)when the first node is equal to the second node, or
is a descendant of the second node, return null; (2) when
the second node is a descendant of the first node, remove it
from the subtree of the first node and return the remaining;
(3) otherwise, when there is no overlap between the first and
second nodes, return the first node.

In addition to Remark 1, we extend the second operand
to a “node sequence” to define deep-except-nodeseq:

Remark 2 deep-except-nodeseq operator takes one node
as the first operand and one node sequence as the second
operand, process them according to the following conditions:
(1)when the first operand is equal to any node in the sec-
ond operand, or is a descendant of any node in the sec-
ond operand, return null; (2) when any node(s) of the sec-
ond operand is descendant(s) of the first operand, remove
it(them) from the first operand and return the remaining;
(3) otherwise, when there is no overlap between the first and
second operands, return the first operand. 2

1According to XML standards, when this node is projected
to the document, the whole subtree rooted at this node is
returned.

∪
D
∪ ∩

D
∩ -

D
−

A=B A A A A ∅ ∅
//A//B {A, B} A ∅ B A partial content

no overlap {A, B} {A, B} ∅ ∅ A A

Table 1: Comparison between set operators and
deep set operators

Finally, deep-except operator is defined as follows.

Definition 3 (deep-except) deep-except operator (
D
−) takes

two node sequences as inputs, and conducts deep-except-nodeseq
operation between each node in the first operands vs. the
second operand, and combine the outputs. Formally,

P
D
−Q = {r|r ∈ (pi deep− except− nodeseq Q)} 2

Here we can see that the definition of deep-except oper-
ator appears to be different from the other two deep set op-
erators. The differences are further discussed and explained
in Section 4.

3.2 Examples
Consider the following XML fragment:

<a> <c/> <d/>

Query “/a union //b” yields both <a> and nodes.
When projected on the document, the answer would be:

<a> <c/> <d/> , <c/>

On the other hand, query “/a deep-union //b” yields <a>
nodes only. When projected on the document, the answer
would be:

<a> <c/> <d/>

Query “/a deep-intersect //b” yields nodes:

 <c/>

Finally, query “/a deep-except //b” yields newly constructed
<a> nodes, which is different from original <a> nodes:

<a> <d/>

As another example of deep set operators, we compare
deep set operators and regular set operators at micro level:
given two nodes (i.e. only one item in each node sequence
as operand), what could be the productions of deep set op-
erations, as well as regular set operations?

As we pointed out, the relationship between two nodes A
and B can only be one of the following: (1)they are the same
(A=B); (2) A is an ancestor of B (//A//B)2; or (3) they are
not related (no overlap between them). Table 1 summarizes
the results of conducting regular set and deep set operators
on two nodes of each category.

As an example, if we take a node (e.g. //person[@id=’1’])
and one of its grandchild (e.g //person[@id=’1’]/address/zip)
as operands to conduct three set operations defined in X-
Query, they will generate the results as shown in Figure
3. As we can see, regular set operators compares the IDs
of two nodes and found them different. Thus union opera-
tion returns both nodes, intersect operation returns NULL,

12

site

people regions

person

name

D

D

D

Figure 3: set operators defined in XQuery

12

site

people regions

person

name

D

D

D

Figure 4: Deep set operators

and except operator returns the first operand (grandparent
node).

On the other hand, if we take the above nodes and con-
duct deep-set operations, different results are generated, as
shown in Figure 4. Deep set operators detects that the node
of second operand is a descendant of the first operand, thus:
(1) deep-union operation returns the ancestor (e.g //per-
son[@id=’1’]) only; (2) deep-intersect operation returns the
descendant only (e.g //person[@id=’1’]/address/zip); and
(3) deep-intersect operation returns a newly constructed node,
which contains partial content of the ancestor node, with one
of the descendant node (the second operand) been removed.

The above example is case 2 in Table 1. Comparing Fig-
ure 3 with Figure 4, we can observe the essential differ-
ence between regular set operators and deep set operators:
the regular set operators only compare and process node(s)
in operands, while deep set operators compare and process
node(s) as well as their descendants.

4. PROPERTIES

4.1 Arithmetic Properties
2For case “A is a descendant of B” (//B//A), we can simply
swap token A and B, thus it is still categorized as case 2

The following properties of deep set operators are most
fundamental and can be easily proved by their definitions
(here we omit the proof due to space limit). They are similar
to the properties of regular set operators.
Commutativity

P
D
∪Q = Q

D
∪ P

P
D
∩Q = Q

D
∩ P

P
D
−Q 6= Q

D
− P, unless P = Q

Associativity

(P
D
∪Q)

D
∪R = P

D
∪ (Q

D
∪R)

(P
D
∩Q)

D
∩R = P

D
∩ (Q

D
∩R)

Distributivity:

(P
D
∪Q)

D
∩R = (P

D
∩R)

D
∪ (Q

D
∩R)

In addition, we would like to point out one essential differ-
ence between deep-except operator and the other two. As
we can see, both deep-union and deep-intersect operators
return a sequence of nodes that are originated from the given
XML tree, i.e. they do not create any new nodes. In this
way, the production of these two operators are available for
any other operations defined in XQuery that accepts nodes
as operands, e.g. union, intersect, etc. On the other hand,
whenever deep-except-nodeseq (case 2 of Remark 2) op-
eration is conducted for deep-except operator, new nodes
are constructed. Therefore, the production of deep-except
operator may not be existing node in the XML tree. In
this way, we should identify that although three operators
are named “deep set operators” together, they are actually
operators of different properties. deep-except operator is
constructing new nodes while the other two operators re-
turn nodes of the original XML tree, which is similar to the
regular union and intersect operators.

As an example, “//person deep-except //person/name”
returns “person” nodes. However, the returned “person”
nodes are not the same as “person” nodes that reside in
original XML document: the “person” nodes produced by
deep-except operation do not have “name” child. As a re-
sult, the newly constructed “person” nodes have new nodeIDs,
which are different from original “person” nodes. Therefore,
with the production of deep-except operator, we have to
be careful when conducting further operations with exist-
ing “person” nodes in the XML document, such as union,
intersect etc. Moreover, we cannot use

//person
D
− //person/name

D
− //person/age

although it looks fine in semantics. Instead, we have to use:

//person
D
− (//person/name ∪ //person/age)

4.2 Comparison with Set Operators
As we described above, deep-union and deep-intersect

operators return nodes of the original document (probably
node-IDs in actual applications). Here we provide two the-
orems to further describe the output of these two operators,
especially their relationships with regular set operators.

Lemma 1. deep-union of two node sequences is subset of
their union production:

(P
D
∪Q) ⊆ (P ∪Q)

Proof. Lemma 1 is equivalent to:

if r ∈ P
D
∪Q, then r ∈ P ∪Q. (1)

Suppose we have an r that r ∈ P
D
∪Q, according to Definition

1:

r ∈ Pd or r ∈ Qd.

Consider the equivalency of P and Q, we can assume

r ∈ P/descendant− or − self :: ∗ (2)

According to Definition 1, we also have

r :: parent() 6∈ P/descendant− or − self :: ∗

which means

r 6∈ P/descendant :: ∗ (3)

Comparing (2) and (3), we have

r ∈ P, thus r ∈ P ∪Q,

which proves Equation 1. (q.e.d)

Lemma 2. deep-intersect of two node sequences is sub-
set of their union production:

(P
D
∩Q) ⊆ (P ∪Q),

On the other hand, it is not possibly subset of their intersect
production:

∃P, Q that (P
D
∩Q) 6⊆ (P ∩Q)

This theorem is also described as : if r ∈ P
D
∩ Q, then

r ∈ P ∪Q, but not always r ∈ P ∩Q.

Lemma 3. Unless both operands contain ancestor-descendant
nodes, deep-intersect of two node sequences is superset of
their intersect production:

(P ∩Q) ⊆ (P
D
∩Q)

The proofs of the above two theorems are similar to that
of Lemma 1, and thus omitted.

5. PRELIMINARY IMPLEMENTATIONS
We have implemented the deep set operators through user-

defined functions of XQuery. With this implementation,
these operators are executable in any XML engine that sup-
ports XQuery. On the other hand, as a drawback, this
engine-independent implementation may not be as efficient
as implementations at lower level (say, engine level).

As XQuery’s user-defined functions, our implementations
take node sequences as inputs, including XPath expressions
and other forms of node sequences (e.g. products of set op-
erators). In addition, as described above, the results of both
deep-union and deep-intersect operations are XML node
sequences and are available to further XQuery operations.
Our implementation also supports this property.

5.1 deep-union operator
According to theorem 1, product of deep-union operator

is a subset of regular union operation, i.e. each output node
must originally resides in at least one operand. Following
this theorem, deep-union operator, as shown in Algorithm
1, enumerates the nodes in each operands, referring to re-
quirements of deep-union and return the satisfied ones.

Algorithm 1: deep-union

Input: input node sequences P and Q
foreach node Pi of P do

if empty(Pi ∩Q//*) & empty(Pi ∩ P//*) then
Pi

foreach node Qi of Q do
if empty(Qi ∩ (P ∪ P//∗)) & empty(Qi ∩Q//∗)
then

Qi

5.2 deep-intersect operator
deep-intersect is implemented in a similar way as deep-union.

According to theorem 2, each output node of deep-intersect
operator must originally resides in at least one operand.
To enhance the readability of the algorithm, we divide it
into three steps: first extract the regular “intersect” of two
operands, remove the possible ancestor-descendant relation-
ship that may exists, and output the remaining. Then, for
each of the operand, enumerate the node items, output it
if it is a descendant of the other operand (some exceptions
are eliminated). Algorithm 2 shows how deep-intersect

works.

Algorithm 2: deep-intersect

Input: input node sequences P and Q
foreach node r in (P ∩Q) do

if empty(r ∩ (P ∩Q)//∗) then
r

foreach node Pi of P do
if empty(Pi ∩ P//*) & !empty(Pi ∩Q//∗) &
empty(Pi ∩ (P ∩Q)) then

Pi

foreach node Qi of Q do
if empty(Qi ∩Q//*) & !empty(Qi ∩ P//∗) &
empty(Qi ∩ (P ∩Q)) then

Qi

5.3 deep-except operator
For deep-except operator, as we have described in Section

3.1, it is different from the other two deep set operators.
We implement it in a recursive manner: for each node in
the first operand, (1) if it has no overlap with any node in
the second operand, output it; (2) if it is ancestor of any
node(s) in the second operand, construct a new node with
the same name, attributes and text, and enumerate all the
children to conduct deep-except with the second operand;
(3) otherwise, the node is “covered” by nodes in the second
operand, eliminate it. The general algorithm is shown in
Algorithm 3.

Algorithm 3: deep-except

Input: input node sequences P and Q
foreach node Pi in P do

if empty(Pi//* ∩ Q) and empty(Pi ∩ (Q ∪ Q//*))
then

Pi

if ! empty(Pi//* ∩Q) then
construct element{
element name=name(Pi);
element attributes=Pi/@*;
element text()=Pi/text();
deep-except(Pi/*,Q);
}

else

5.4 Complexity
Although the above preliminary implementations may not

be fully optimized, we can still estimate the computation
of deep set operators. The computation of deep-union

and deep-intersect operators are both O(nc ∗ ns), where
nc denotes the total number of nodes in the sequences of
operands, and ns denotes the total size of the subtrees rooted
at these nodes. On the other hand, the computation of
deep-except operator (P deep-except Q) is denoted as
O(ncq ∗nsp∗i), where ncq denotes number of nodes in P , nsp

denotes the size of subtrees rooted at nodes in P , i denotes
the maximum depth of these subtrees. This appears to be
more expensive than the other two, since recursive function
call is employed in the implementation. It could be greatly
optimized if implemented at XML engine level.

6. PRELIMINARY EXPERIMENTS

6.1 Experimental Results
In the experiments, we use the well-known XMark schema

and its XML document generator [11] to generate the test
document. We generate a 570KB XML document and test
the performance of deep set operators vs. regular set oper-
ators on it. For the underlying XML engine, as we have
described, any engine that implements XQuery is usable
since our implementation relies on XQuery only; here we
pick Galax 0.5.0 (and its Java API) [12].

For each operator, we generate pairs of XPath expressions
(P and Q) as operands, and test all three deep set opera-
tors. For comparison, we also test regular set operators with
the same operands. However, please note that the straight
comparison of query evaluation time is unfair since regular
set operators are supported within the core of XML engine,
but our deep set operators are only implemented through
user defined functions (UDF) of XQuery. We present the
comparison only for reference, not for competition.

Experiment results are shown in figure 5, note we only

measure the pairs where P and Q overlap (i.e. P
D
∩Q 6= ϕ),

since only in these cases the products of regular set operators
and deep set operators differ.

6.2 Discussions
From the figure, we can see that deep set operators are

slower than regular set operators, but query processing time
is still within 0.5 ms on this document. Deep set operators

12

site

people regions

person

name

=

∩

=∩

=_

=

=

=_

D

D

0

100

200

300

400

500

O perators

Q
ue

ry
 e

va
lu

at
io

n
tim

e
(m

s) D

D ∩ D ∩ _D _

Figure 5: Experiment results of deep-except

are slower because of two main reasons:

1. Deep set operators need extra overhead to support
more intensive semantics. It is not fair to directly com-
pare these two groups of set operators, since they are
in fact different things. In this way, the preliminary
experiments are just used as a reference of the perfor-
mance of deep set operators.

2. In our experiments, deep set operators are implemented
through user-defined functions (UDF) of XQuery. Thus
they could not compete with regular set operators,
which are well optimized in the engine (core). For
instance, the main part of deep intersect operator is
comparing two node sequences and picking the com-
mon elements, for which algorithms of O(log n) ex-
ists. However, we cannot employ these optimized al-
gorithms in XQuery UDF.

In addition, deep-except is slower than other two because
of the recursive implementation of deep except semantics.
However, this could not be avoided as long as we are using
UDF of XQuery.

In the future, we plan to improve the performance of deep
set operators by implementing them in the XML database
engine. In this way, we can design and implement more
efficient (and more complicated) algorithms. Together with
the advantage of engine level implementation, we are sure
to gain performance improvement.

7. CONCLUSION
In this paper, we propose deep set operators for XQuery.

Regular set operators defined in [2, 5] only rely on node-
IDs to identify and compare nodes. Therefore they ignore
the comparability issue of operands and neglect the tree-
structured hierarchy of XML data. The newly defined deep
set operators take the ancestor-descendant relationships within
input XML nodes into consideration. Items in input node
sequences are not regarded as atomic entities, instead, they
are treated as hierarchically nested elements, which accords
with the designed semantics of XML. Deep set operators
traverse into descendants of nodes to conduct comparison
and processing, in a “deep” manner. We propose the formal
definition of deep set operators, then explore their compu-
tational properties as well as relationships with regular set
operators. Finally we provide an implementation of deep
set operators, which purely rely on XQuery and thus in-
dependent from XML engine. Experiment show that some
reasonable overhead is required to support deep set opera-
tions.

8. REFERENCES
[1] A. Berglund, S. Boag, D. Chamberlin, M. F.

Fernndez, M. Kay, J. Robie, and J. Simeon. “XML
Path Language (XPath) 2.0”. W3C Working Draft,
Nov. 2003. http://www.w3.org/TR/xpath20.

[2] S. Boag, D. Chamberlin, M. F. Fernández,
D. Florescu, J. Robie, and J. Siméon. “XQuery 1.0:
An XML Query Language”. W3C Working Draft, Feb.
2005.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen
(Eds). “Extensible Markup Language (XML) 1.0 (2nd
Ed.)”. W3C Recommendation, Oct. 2000.
http://www.w3.org/TR/2000/REC-xml-20001006.

[4] P. Buneman, A. Deutsch, and W.-C. Tan. “A
Deterministic Model for Semistructured Data”. In
Workshop on Query Processing for Semistructured
Data and Non-Standard Data Formats, 1998.

[5] D. Draper, P. Fankhauser, M. Fernandez,
A. Malhotra, K. Ross, M. rys, J. Siméon, and
P. Wadler (Eds). “XQuery 1.0 and XPath 2.0 Formal
Semantics”. W3C Working Draft, Apr. 2004.
http://www.w3.org/TR/xquery-semantics/.

[6] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra.
“Executing SQL over encrypted data in the
database-service-provider model”. In ACM SIGMOD,
2002.

[7] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava,
and K. Thompson. “TAX: A Tree Algebra for XML”.
In Int’l Workshop on Data Bases and Programming
Languages (DBPL), Frascati, Rome, Sep. 2001.

[8] B. Luo, D. Lee, W.-C. Lee, and P. Liu. “QFilter:
Fine-Grained Run-Time XML Access Control via
NFA-based Query Rewriting”. In ACM CIKM’ 2004,
Washington D.C., USA, Nov. 2004.

[9] Ashok Malhotra, Jim Melton, and Norman Walsh.
“XQuery 1.0 and XPath 2.0 Functions and
Operators”. W3C Working Draft, Feb. 2005.
http://www.w3.org/TR/2005/WD-xpath-functions-
20050211/.

[10] Stelios Paparizos, Shurug Al-Khalifa, Adriane
Chapman, H. V. Jagadish, Laks V. S. Lakshmanan,
Andrew Nierman, Jignesh M. Patel, Divesh
Srivastava, Nuwee Wiwatwattana, Yuqing Wu, and
Cong Yu. Timber: a native system for querying xml.
In SIGMOD ’03: Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, pages 672–672, New York, NY, USA, 2003. ACM
Press.

[11] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. “The XML
Benchmark Project”. Technical Report INS-R0103,
CWI, April 2001.

[12] J. Simeon and M. Fernandez. “Galax V 0.3.5”, Jan.
2004. http://db.bell-labs.com/galax/.

APPENDIX

A. SOURCE CODE

A.1 Deep Union

declare function local:d_u($p,$q){

let $pqr:=$q//* union $p//*

for $pn in $p

return

if (empty($pn intersect $pqr)) then

$pn

else(),

let $pqr:=$p//* union $q//*

for $qn in $q

return

if (empty($qn intersect $p) and

empty($qn intersect $pqr)) then

$qn

else()

};

A.2 Deep Intersect

declare function local:d_i($p,$q){

let $pr:=$p//*

let $qr:=$q//*

for $pn in $p

return

if (empty($pn intersect $pr) and

(not(empty($pn intersect $qr or

not(empty($pn intersect $q)))))) then

$pn

else(),

let $pr:=$p//*

let $qr:=$q//*

for $qn in $q

return

if (empty($qn intersect $qr) and

not(empty($qn intersect $pr))) then

$qn

else()

};

A.3 Deep Except

declare function local:d_e($p,$q){

let $qr:=$q//*

for $pn in $p

return

if (empty($pn//* intersect $q) and

empty($pn intersect $q) and

empty($pn intersect $qr)) then

$pn

else if (not(empty($pn//* intersect $q))) then

element{name($pn)}{

$pn/@*,

$pn/text(),

local:d_e($pn/*,$q)

}

else()

};

