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Abstract

XQuery is a standard language for doing queries over XML: designed carefully by some very skilled people to be superb at taking XML-structured data apart, sifting through it, and putting it back together.  Our project's document generation subsystem involved taking XML-structured data apart, sifting through it, and putting it back together.  Why was it so much more agonizing to do that in XML than in Java?  How can one design a specialized query language so that it is nicer to use than a general programming language?
Introduction
Jon Bentley’s [Bently88] concept of a little language has been quite powerful and quite useful: a small programming language, neither suitable nor intended for industrial-strength computation, but tightly focussed and extremely effective on a limited domain of interest.  XQuery is a good example of a little language: a functional language designed for querying XML data sets.  On paper it looks like an excellent way for doing substantial dissections and manipulations of XML data.  

We tried to push it in the AWB project, though.  Our XQuery program ended up being a few thousand lines long and conceptually fairly simple. XQuery’s XML manipulation powers were excellent, but some of the other issues of nontrivial programming – notably debugging and error handling – swamped the XML manipulation.  When circumstances forced us to rewrite that component in Java, the rewrite took a small fraction of the time of the XQuery version – even considering that it was a reimplementation.  It was also much cleaner, with the error handling neatly packaged and abstracted.  

As the Little Language propaganda suggests, XQuery is, indeed, superb for XML manipulation.  It’s not good for much else – not even for kinds of computation (like error handling) that are likely to be needed for programs that do XML manipulation.  
Sketch of AWB

A little information about Architect's Workbench (AWB) will help explain some of the problems we encountered. AWB is a device for collecting, maintaining, and documenting the multifarious and barely-structured information required for producing an IT architecture. For this study, the details of IT architecture don't matter very much. Indeed, very little of IT architecture is hardwired into the system: the only IT-specific components are a few editors for kinds of diagrams that IT architects draw. 

The rest of AWB is very configurable, via the metamodel. Most AWB structures are defined in a pile of files: what kinds of entities AWB will talk about, what sorts of editors it will use to manipulate them, and so on. AWB has retargeted to be a workbench for (1) an antique glass dealer, and (2) itself. 

AWB sees the universe as a directed, annotated multigraph. The nodes of the graph have a type and a number of properties. The types belong to a single-inheritance type hierarchy (described as part of the metamodel). 

Each type of node has some scalar-typed properties, given in the metamodel. E.g., a Person node might have string-valued firstName and lastName properties, an integer-valued birthYear property, and a HTML-valued biography property. 

The edges of the multigraph are called relation objects, and are categorized into relations. Relations are hierarchically typed, like nodes: likes might be a relation connection Persons, and favors might be a subtype of likes. Relations generally have many choices of source and target type. The IT architecture system uses the relation has in dozens of ways: A System has Servers, Subsystems, Users, and many other things. (The intent of the metamodel writer is to make the data read naturally to technically-unsophisticated users.) Relation objects have properties, like nodes, though little AWB software takes advantage of the fact. 

AWB is intended to allow users to do what they think best whenever possible, even overriding the intent of the metamodel writer. A user can add a new property to a particular node (e.g., giving Person nodes a middleName property). Similarly, the types on relations are advisory, not compulsory: the user can make a Person use a Program, even if the metamodel prefers to phrase that as the Person use System and System runs Program. This feature is crucial to our users, but troublesome at times in implementation.
Tour of XQuery 

XQuery is a W3C Working Draft of a standard query language for XML. It had not, as of the time this work was done, been accepted as an actual standard. But it had been worked on at great length by many quite skilled people, and was getting towards a form of stability. 

The goal of XQuery is to make general queries over XML data stores: to interrogate some XML data and yield an answer in the form of other XML data. The XML inputs for XQuery are intended to come from just about any form of XML. [XR] gives examples including technical manuals (presumably in HTML or some other XML formatting language), XML representations of databases, and XML-structured weather information streams. Ultimately, XQuery seems intended to take pretty much arbitrary XML, interrogate it in any straightforward way, and summarize the answer as XML. 

So, XQuery is designed to be excellent at three things: 

1. Dissecting XML-structured data

2. Computing with pieces of XML-structured data

3. Constructing XML-structured data out of pieces as from 2.

XQuery’s Data Model

XQuery’s data model is based on a data standard called XML Schema.  There are three kinds of types.  Scalar types are for simple data: strings, numbers, booleans, etc.  There are some subtleties (e.g., the usual concerns about how dates work: how does one month compare to 30 days?), but we never used anything but strings, numbers, and booleans.  

XML types are, quite literally, internal representations of XML-structured data, complete with attributes, child elements, text elements, and so on.  This has some subtleties too.  One kind of XML node is an attribute node, an internal representation of the state=”MA” in the example above.  Logically, it is nothing more than a mapping of a single string name to a single string value.  Illogically, it caused us a great deal of trouble.

Finally, there are sequences.  Actually, everything in XQuery is a sequence – there is no distinction between a single value and a length-one sequence containing that value.  Indeed, the very notation for sequences plays on this ambiguity: sequences are written in parentheses, with () being the empty sequence, (1,2,3) being a sequence of three numbers, and (1) being indifferently the value 1, or a singleton sequence containing that value.   
Sequences are flat: the items in a sequence can be scalars or XML values, but not other sequences. Attempting to put one sequence inside of another results in flattening: (1,(2,3,4),(),(5,((6,7)))) = (1,2,3,4,5,6,7), with all of the internal sequence structure washed out.
 
XQuery: Dissecting XML

XQuery includes XPath 2.0, a concise and powerful expression language.  If $x is an XML element, then $x/kid is the sequence of children of $x named kid, and $x//grandkid is the sequence of descendents (at any depth) named grandkid.  $x/kid[1] is the first kid, and $x/kid[@year=”1983”] the children which have an attribute called “year” with value “1983”.  There are axes, allowing searching around the XML tree in several directions: parent::book gives the parent node of the current node, but only if it is a book.  There are quantifiers, so that some $y in $x/kids satisfies count($y//foo) gt count($y//bar) tells whether any kid child of $x has more foo descendants than bar descendants.  
For XIME, we assume basic familiarity with XQuery.

Why Did We Pick XQuery?
One important reason for avoiding Java had nothing to do with XQuery in particular.  We wanted AWB to have some decent abilities for data interchange with other tools.  We had no specific other tools in mind, but on general principles, it presumably will be necessary sometime to, say, generate System X files out of AWB models, where X is the hot new something-configuration tool of 2007.  The best way to tell whether our data interchange format was at all usable was to use it for something.  Document generation seemed like a good, clean, easy example – the document generator will read the AWB model but won’t modify it, and the document generator would be written specifically to work with AWB.  But the data exchange possibilities would be exercised enough to get some idea about how hard it would be to communicate with other programs.  So, we decided to do an external document generator – a program which simply used AWB’s exported data, rather than working with live AWB models.  
AWB saves its models in a nice, clean XML format.   It seemed quite sensible to use that format as the document generator’s input format.  
Once we had decided to use an external generator, we looked around at a variety of languages and systems.  XQuery instantly delighted us, and, on further examination, continued to delight us. 
1. It is a functional programming language.  We have taught functional programming propaganda several times, and used various functional languages for toy personal projects a tenth the size of the document generator, and supervised student theses in more or less functional style, but we had not personally exactly gotten to do anything substantial in one.    We were eager to put all our theoretical knowledge into practice.
2. We know the reputations of some of the people involved in the XQuery effort, and have a great deal of respect for them. (Despite the results of this paper, we still do.)  
3. XQuery is designed to be excellent at the three basic things that we thought we were doing: dissecting XML, reorganizing XML, and constructing new XML out of the pieces.   
There were a few negative reasons as well.  There weren’t any other good choices for what we wanted to do in the way we wanted to do it.
1. Most modern languages can manipulate XML.  However, most of them don’t have such inherent, detailed XML support as XQuery; for most, XML is a feature added on in a library, and, in all likelihood, without any particularly convenient syntax.  If we were going to use a major language without inherent XML support, we would be better advised to just use Java, and integrate the work product generator with the rest of the system, and skip the XML manipulation entirely.  (Which, in fact, is what we ended up doing.)

2. There are only a few XML-manipulation languages with W3C or other major institutional blessing.  We wanted to avoid the legal and technical difficulties of some non-standards-based languages, since IBM was planning to sell the work product generator.
3. Of the standards-blessed XML manipulation languages, XQuery seemed far and away the most suitable.   XSLT, the main alternative, is well-suited for text manipulation, but it is harder to phrase the wide-ranging general computations we need in it. 
The Structure of the Document Generator

The document generator is, of course, designed to produce documents involving boilerplate text and information extracted from the AWB model.  Its main input is a template, in XML.  A template is a mix of HTML directives and text, which are simply copied to the output document, and idiosyncratic AWB directives, which cause various more or less obvious sorts of behavior for their children.  For example, 
<ol>


<for nodes=”all.user”>

 

<li>




<if>





<test> <focus-is-type type=”superuser”/> </test>





<then> <b> <label/> </b> </then>





<else> <label/> </else>




</if>



</li>


</for>

</ol>

produces a numbered list (HTML’s <ol> directive) of the nodes of type user (<for>), with the nodes representing superusers bolded (<if>).   <for> sets an implicit variable, the focus, to successive user nodes. <focus-is-type/> tests whether the focus has the given type.
The heart of the document generator is a quite straightforward recursive walk over the XML structure of the template, inspecting each XML element in turn.  AWB directives like for, if, and focus-is-type are dispatched to special-purpose code for execution; everything else is simply copied.   

The special-purpose code for handling AWB directives have the obvious common structure as well. They all collect pieces of the directive – the if code looks for a test attribute and children named then and else.  If enough pieces are there, the obvious thing is done – if evaluates test to a boolean, and then one of the children as a template. 
There are some complicated directives, e.g., one to create a table following some special-purpose AWB protocols. There are a few subtleties, for directives like <table-of-contents> and <table-of-omissions>.  But the bulk of the code, and the bulk of the trouble, was in the sort of very straightforward interpreter-like code discussed in this section.
So, although the document generator was a fairly big functional program (a few thousand lines), it was nicely modular.  The recursive walk was a hundred lines of code, mostly lines of the form if ($tag-name = “for”) then generate_for(…).  Each special-purpose generator was a few dozen lines of code with a nicely stylized interface, largely independent of other generators or the recursive walk.   
Following standard software engineering practice, we wrote our own utility functions: set manipulation routines, some string- and element-handling function like without-leading-or-trailing-spaces($string) and child-element-named($parent, $name) that  XQuery chose not to provide, a bit of trigonometry, and other routine things.  This proved to be a fruitful source of trouble: it is impossible to do basic data structures nicely in XQuery, as we will see below.
Aside: Why Not XSLT?

We considered using XSLT, which is generally regarded as highly suitable for document transformation.  However, our transformations seem more extreme than the ones XSLT is intended for.  Even in the earliest versions of AWB, it was possible and important to do fairly general computation in the document template.  For example, in one document template, we needed to follow one relation R1, and, from all the AWB objects reached at the end of it, follow another relation R2, and collect all the objects reached from that into a set without duplicates.  Since we expected to see many variations on this theme, we allowed a modest expression language to the document template generator. 
This was reasonable enough to do in XQuery, where we represented the collections of objects as sequences of XML nodes, and had enough ability to bind variables and such to be able to manage all the information. This was essentially writing an interpreter in XQuery, which is not a hard exercise.  Doing it in XSLT, which is not generous with variable bindings, nested computations, and the like, seemed much more painful. 
(It is worth noting that (a) the document template itself can’t be in XSLT or XQuery, and (b) the mental model that document template writers use is not XML-like because, e.g., the data is not and cannot be tree-structured.) 
Aside: Why Java, in the end?

After several months of hard programming,  we had a working document generation system written mostly in XQuery, with a bit of XSLT sprinkled in at the end.  A significant part of this was the AWB query language – a little calculus in which one could say, for example, “Start at this user; follow the relation “likes” forwards; follow the relation “uses” but only to computer programs from there; collect the results, sorted by label.”   
Then the rest of the team decided that the UI needed similar queries.  For example, one useful feature of the Workbench is “Omissions” – a window listing incomplete parts of the model.  For example, the documents we produce are supposed to have version information; a document without any version information appears, with a suitable flag, in the Omissions folder.   The Omissions window, as part of the UI, is always visible.  It is not related to work product generation – omissions can be seen even if no work product has ever been generated.
Early in the project, the omissions were hard-coded in Java, which was prohibitively difficult.  Later on, they got their own XML-based calculus, loosely based on a small subset of the calculus used in document generation.  

However, it was obvious that the same questions would need to be asked in both UI and document generation queries. There was no excuse for having two query languages.  It would, of course, be insane to have two implementations of the same query language, an XQuery one for document generation and a Java one for the UI.  Calling XQuery from Java to evaluate queries was preposterously inefficient, and would have made the workbench unusably slow. There was only one sensible choice for the good of the project as a whole.  So, after a significant amount of dissent, we agreed to abandon the XQuery interpreter for our query language, and, with it, the XQuery document generator we had spent so much time on, and prepared for several months of equally horrible Java coding, made worse by the fact that producing XML in Java is quite unpleasant …

… only to discover that doing it in Java was much, much easier, despite the XML annoyances and the fact that Java had no linguistic features particularly suited for what we were trying to do. In a few weeks we had pretty much reproduced the power of the XQuery code.  In a few more, we had gone far, far beyond it, in ways we would never have dared try in XQuery.   

It was a very dramatic contrast indeed.

(We did expect the reimplementation to be easier than the first one.  However, this is hardly the first time we have reimplemented an interpreter.  The reimplementation advantage has never been this dramatic before.) 
The Trouble with XQuery
All of our specific technical hopes about XQuery were fulfilled.  However, a few other issues appeared, and, ultimately, dwarfed the parts we had anticipated.

1. Error detection and handling was extremely difficult in XQuery.
2. It is difficult to build general-purpose data structures, such as sets and maps, in XQuery.
3. Some aspects of document generation were very clumsy to express in XQuery due to limitations imposed by functional programming. (They would have been much less of an issue in most functional languages.) 

4. Debugging XQuery was quite challenging.
5. XQuery has some annoying syntactic quirks, which are historically sensible but awkward to use.  This issue was minor.
6. XQuery’s type system was distinctly unhelpful. This issue was minor.

Arguably, some of our difficulties were our fault.  XQuery is, after all, a query language.  We were trying to do some fairly general programming in it.  The example XQuery programs from the XQuery use cases [UC] are a few tens of lines; our program, by the end, was a few thousands of lines.   However, we were only using XQuery constructs in unremarkable ways, and using coding methods that most languages and systems would have handled without breaking.  Performance issues would have been entirely forgivable.  Software engineering issues were more surprising and more notable.
Syntactic Quirks

Every language has its own syntactic annoyances.   XQuery, with more syntactic constraints on it than most languages and some peculiar history, has, perhaps, more annoyances per unit syntax than most.   These did interfere with work to a small degree: five minutes to figure out the syntax error, and another half-hour to wander around to coworkers and ask them, “What do you think that $n-1 means in XQuery?”. 
1. x means “the children of the current node named x”, not “the variable named x”.  This is historical: XPath 1.0 had no variables, and so used identifiers for XML tag names.  It is also a regular annoyance: it is easy to forget the “$” that indicates variables.  Galax’ error message is: “Internal_Error: Variable '$glx:dot' not found.” (regardless of the identifier missing its $), which makes perfectly good sense when you remember that “the current node” is written “.” in XQuery, and so could reasonably be called $glx:dot by the compiler internally.   It would have been helpful to have a line number in this message, but I rarely wrote more than half a dozen lines of XQuery between test runs, so finding the actual error was generally not hard.  This was, far and away, the most frequently-annoying syntactic quirk. 
2. / means “go to a child”, not division.   Again, this is a historical artifact from XPath 1.0.  We only used division 15 times in the document generator,  once for binary search and the rest for trigonometry, so this particular oddity probably bothered us just twice.
3. - is part of a variable name, not automatically subtraction.   $n-1 is a variable with a three-letter name, not a sensible index into an array of size $n.   In a solution as old as COBOL, subtraction requires syntactic breaks around the “-“: $n – 1 or ($n)-1 or some such.  This quirk is required by the facts that (1) XML allows dashes in tag and attribute names, and (2) XQuery allows tag and attribute names to occur without quotes.  We consider both of these to be good choices, and the occasional accidental non-subtraction an entirely acceptable price.
4. The usual relational operators like = don’t mean the usual things.  For reasons originating in XPath 1.0, $x=$y is true if $x and $y are sequences with at least one element in common: 1 = (1,2,3), and (1,2,3)=3, but, of course, it is not the case that 1=3.  XQuery has a family of singleton operators: it is not true that 1 eq (1,2,3).  In practice, perhaps because of its outlandishness, this feature proved remarkably easy to remember and never caused any trouble. We used the singleton operators almost everywhere. Once in a while, we used = to test if a sequence contained a value, and noted in a comment that we intended to use it this way.
These are a touch more annoying than, say, C/C++/Java’s overdependence on {}’s, but really just an ordinary part of the cost for using a programming language.
Error Detection and Handling

One of AWB’s design criteria was that the model description should be suggestive rather than prescriptive.  For example, every use of AWB to design a system should have a SystemBeingDesigned node to represent the system being designed.   It doesn’t make sense to leave that node out, nor to have several such nodes. Nonetheless, AWB doesn’t force the user to make a SystemBeingDesigned node.  It will display a meek warning message in a corner of the screen, that the user might want to ensure that there is exactly one SystemBeingDesigned node.  (In fact, the requirement is configurable – the glass catalog doesn’t have a SystemBeingDesigned node at all, nor a warning about it.)   The only penalty to not having a SystemBeingDesigned node is that operations referring to the system being designed won’t work.  
The same philosophy is applied everywhere convenient – e.g., a relation that should only connect SystemBeingDesigned to Computer might (by user fiat) in fact connect a SystemBeingDesigned to a PerformanceRequirement.  Presumably the user thinks that this makes sense, and presumably the user is willing to modify the document templates to use this fact.  But it does violate the metamodel we provide with AWB.
Since AWB provides recommendations rather than restrictions on the user, the rest of the system has to expect that the model won’t match the metamodel, and deal with it accordingly.  The System Context document, for example, requires exactly one SystemBeingDesigned node in the model (and a number of other nodes and connections).  The gadgetry to produce a System Context document must, therefore, make sure that there is one, and do something sensible if not.

There are only a few choices of how to represent exceptional returns in XQuery, and none of them work conveniently under all circumstances.  A typical approach, which we usually took,  is to return an XML structure with root tag “error”, and a few children that explain what went wrong:

<error>


<message>There should have been exactly 



one SystemBeingDesigned node, but there were two.


</message>


<data> … representations of the two SystemContextNodes </data>

</error>

This error representation does not work under all circumstances in XQuery, for several reasons.
 Nor will any other representation in which a function returns the value v  to indicate that its value is v.
  So we wound up with several ways to report errors, and had to keep track of which one went with which function.  Indeed, the XQuery library functions – like most library functions – already have this problem.
To make the matter more complex, we need two kinds of error messages: 

· Internal error messages, in which utility routines explain what went wrong in internal terms: e.g., a function to get the first element of a list explaining that the list was empty. 

· External error messages, in which the system explains to the user what went wrong – at least explaining which part of the input caused the error.  Utility routines generally cannot produce these errors: the function to find the first element of a list is not informed why it is being called. 

So, the pattern of usage for any function that could possibly cause an error is: 

LET $return-value := f(arg-1, arg-2, arg-3) 

RETURN 

    IF is-error-of-the-kind-that-goes-with-f($return-value)

    THEN 

      <error>
        {$return-value/message}


  
 <location> where-am-I() </location>

        <other-clues/> whatever </other-clues>

      </error>

    ELSE

      go back to main line of computation and do whatever is to 

      be done with f’s return value.
Between the model’s requirements being merely suggestions, and the general fact that most functions have some invalid arguments,  this turned nearly every function call into a half-dozen lines of code, and a potential problem when we used the wrong error test.   The actual behavior of most code was very badly obscured, with one small piece of computation every few lines, hidden behind billows of error messages. 

Error Reporting in Java
The problem almost vanished in Java, with careful use of Java exceptions. Exceptions are Java objects, and can hold data: they connote, e.g., “There was trouble generating a work product, concerning node N12321, when looking at the <foo> part of the document template.”   Every Java function explains, as part of its type, which exceptions it can throw, as well as what value it returns normally. It is statically guaranteed not to throw any other exceptions. When executing, it can either return a value or throw an exception, but not both. The caller uses entirely different syntax to deal with the two; it is impossible to confuse them.   If f calls g, and g can throw E, then: 

· If f can’t throw E, then f must catch E. Every call to g must be inside a try…catch block:



try {




… g() …



} catch(E …) {



 
// … deal with E happening.



}

· If f can throw E, then f may catch it, but doesn’t have to.  If f doesn’t catch E, and, at runtime, E occurs inside of g, then f will stop executing at the call to g, and the function that called f will have to deal with E. 

(There are further complications – some exceptions don’t need to be mentioned, and f can arrange for some code to be executed after g throws E even if f doesn’t catch it.)

We chose to allow nearly every function to throw our own GenTrouble exception.  GenTrouble was an exception carrying quite a bit of data – a string describing what the error was, plus the inputs that went into causing the error.  Our utility functions would throw GenTrouble if they had a problem: e.g., requiredChild(…), which returned the child node of the document template with a given name, would throw GenTrouble if there was no such child node.  This did mean that the utility functions generally got extra arguments – requiredChild sensibly needs the document template for its ordinary computation, but it is also given the focus so that it can throw a more comprehensive error message.  We initially grumbled at having to write the extra arguments, but quickly found that it wasn’t a lot of extra work. As a side benefit, nearly all functions in the core took just about the same arguments in the same order, so we no longer had to look up what the arguments were – which had been more effortful and errorful than  typing the arguments.

Since the medium-level as well as the low-level functions all threw GenTrouble,  we could get away with not checking for errors except at the highest level.  For example, grabbing two required children in Java was simply: 

Element c1 = requiredChild(“C1”, …);

Element c2 = requiredChild(“C2”, …);

continue to compute

where the same computation in XQuery would have been 

let c1 = requiredChild(“C1”, …)

return


if isErrorOfType1(c1) then 



deal with error


else



let c2 = requiredChild(“C2”, …)



return 




if isErrorOfType1(c2) then 





deal with error




else 





continue to compute

Java-style exceptions, used a bit carefully, let us pretend that the utility functions never have errors.  XQuery didn’t let us ignore errors at all.

Mutability vs. Functionality
Some important tasks for document generation include: 

1. Generating a table of contents.

2. Generating a table of omissions – that is, a listing of all the nodes in the model (of certain types) which were not used in preparing the document.  These nodes were likely left out by mistake.

3. Replacing the phrase “TABLE-1-GOES-HERE” with the HTML that produces Table 1, in the middle of a big messy blob of formatted text that probably got pasted in from some other application. 
Our first thoughts for doing these were: 

1. For the table of contents, whenever a heading that goes in the table of contents is produced, toss it into a list.  At the end, construct the table of contents out of that list, and stuff it into the right place at the start of the document.

2. For the table of omissions: whenever a node is observed in the document, cram it into a set.  At the end, all the nodes not in the set are potential omissions.

3. To replace a phrase, search for the phrase in the HTML structure.  It will probably be in the middle of a XML Text node, so rip that node apart and shove Table 1’s HTML bodily into the gap.

XQuery is a purely functional language, so none of these is possible as written.  Functional programmers have evolved techniques for working with accumulative structures, as in 1 and 2, and mock-mutation, as in all three. In most functional languages, one would simply have the generation functions return multiple values.  A generic functional idiom for monitoring observed values (second return value) and table of contents entries (third return value) as well as generating the document (first return value) looks like: 

(* Generic functional language *)
fun gen (SECTION(heading,body), f:node, …) = 


let (genHeading, hObserved, hToC) = gen(heading, f, …) (*line A*)


and (genBody, bObserved, bToC) = gen(body, f, …)


in 



(makeSection(genHeading, genBody), 



hObserved union bObserved union {f},



ToCEntry(heading) append hToC append bToC)


…

This works because most functional languages have a finely-tuned set of ways to create and dissect small data structures.  “let (genHeading, hObserved, hToC)=gen(…)” calls gen, splits the result into three pieces, and binds those to variables. 

XQuery does not have a finely-tuned set of ways to create and dissect small data structures.  It has sequences, but does not allow sequences of sequences – ((a,b),(c,d)) = (a,b,c,d).    If we tried keeping the contents entries and omissions entries in two lists and use this scheme, the lists would get blended together. It has XML structures, but no other way of forming labeled tuples.  So, the exact scheme for returning multiple values depends on just what the values to be returned are – and combining this with returning exception values is an extra challenge. If we represent the two sets as XML structures (which makes the basic operations several times as expensive), we can return the results in an sequence: 

<-- XQuery for (* line A *) above--> 

let $genHeadingResults := gen(heading, f, …)

return 


if isError3($genHeadingResults) then …


else 



let $genHeading := $genHeadingResults[1]



let $hObserved := $genHeadingResults[2]



let $hToC := $genHeadingResults[3]



return 




<-- go on to next line of functional code. -->

This is cumbersome and delicate to do from scratch.  The thought of updating several hundred lines of code into this form was unendurable.  We decided on a different approach. We generated the document in several phases.

1. Phase 1 would generate the whole document.  It would include information for use by later phases in the document, inside <INTERNAL-DATA> tags.    For example, whenever a node is visited, we include <INTERNAL-DATA><VISITED node-id=”N1234321” /></INTERNAL-DATA>. 
2. Phase 2 constructs the table of omissions.  It looks at all the <VISITED> tags in the document – which can be nicely phrased in XQuery as $doc//VISITED – and constructs the table of omissions out of that.  It then copies the entire document, sticking the table of omissions in the right place.

3. Phase 3 constructs the table of contents, similarly. 

4. etc. 

5. The final phase walks over the document and destroys all <INTERNAL-DATA> tags and their children, thus erasing all the data used for communicating between phases.  (Or, strictly, it copies everything but the <INTERNAL-DATA> elements, since no mutation happens anywhere.)
This approach allowed us to add extra phases at need, without having to rewrite every function call in the document.  It was fairly inefficient, requiring multiple copies of the entire output (complete with internal notes that weren’t going to get into the final output).   This wasn’t horrible, though it wasn’t entirely pleasant either.

Mutability in Java

Java is an imperative language, blessed with a wide selection of mutable data structures without peculiar requirements on their elements.   A few lines of code let the generation state include a list of table-of-contents entries and a set of visited nodes.  A very modest second phase of computation lets us modify the produced document, cramming in the tables at the appropriate places by modifying the in-memory XML data structures.  After the extensive hassles of trying to do this in XQuery, the Java coding was remarkable in its routineness. 
Generally, the Java code was all-but-functional: the main line of computation made no substantive use of Java’s imperative features.  They were almost never necessary or even useful, except for computing tables of contents and omissions – and, surprisingly, one other topic.  
We wanted to produce tables that looked like this: 

	row\col
	col title 1
	col title 2

	row title 1
	val-1-1
	val-1-2

	row title 2
	val-2-1
	val-2-2


The HTML for this has roughly the form: 
<table>


<tr> 



<td> row\col </td>



<td> col title 1 </td>



<td> col title 2 </td>


</tr>


<tr>



<td> row title 1 </td>



<td> val-1-1 </td>



<td> val-1-2 </td>


</tr>

<tr>



<td> row title 2 </td>



<td> val-2-1 </td>



<td> val-2-2 </td>


</tr>

<table>

Producing this in XQuery takes a certain amount of care, because each row and then the table itself must be produced in its entirety, all at once.  The first row, with the column headings, is fairly routine.  The later rows all have one row title and several values.   Getting all the pieces right wasn’t exactly hard, but wasn’t exactly easy either: it was a large and somewhat intricate segment of code.
The Java was substantially easier to arrange.  We constructed the skeleton of the table, the <tr> and <td> elements (with nothing inside them), in a straightforward loop, and stored references to the <td>s in a two-dimensional array.  Then we filled in the corner, the row titles, the column titles, and the values, each in a separate loop.   There was no need to mingle the computations of row titles and cell values.  It was so easy to do in Java that we would not have noticed that it could possibly be harder, if we had not done it in XQuery.
Data Structures and Abstractions

Java, like most modern full-sized languages, supports data abstraction.  The programmer can create structures and hide their internal details.  Java, as an object-oriented language, does considerably more, but the data abstraction was the part we missed the most.

Data abstraction is fairly important for large projects, but our program and team were small enough so that true abstraction barriers weren’t crucial.  In most languages that don’t support hiding of internal details of structures, a careful programmer can simply make a point of not looking too deeply at structures. In Scheme, for example, it is quite common to implement abstract data types as lists – a point could be a list of two numbers – and simply agree that one should never use list operations on points.  Nothing in the language prevents one from using a point as a list (and the point operations have to be implemented in terms of list operations in any case), but with a bit of routine caution it can be done properly.
XQuery doesn’t have data abstraction – and is remarkably resistant to mock data abstraction.  One cannot ignore the representations of data. If, for example, we want to implement a point as a list of two numbers, the basic operations all work fine.  However, if one tries to work with a list of points, the representation breaks: making a list of the points (1,2) and (3,4) actually makes a list of four numbers, not two two-element lists. Points are simple enough to be represented as XML values, <point x=”1” y=”2”/>.  
The trouble comes when one tries to implement generic data structures, like stacks or sets, in XQuery. Given the power of XQuery’s data and control structures,  we expect that it would be straightforward to build a nice set mock-abstraction.   The straightforward ways don’t work.   Indeed, it seems impossible to build it at all, in full generality, without encoding the values in the set somehow.  
Recall that XQuery has two composite data structures: XML elements, and sequences of values.  Neither one can be used as a simple container: nested sequences are flattened, and attributes are treated specially as children of XML elements.  Putting sequences or attribute nodes into data structures is thus challenging. 

Consider making an sequence or XML element with children given by the contents of variables X, Y, and Z – in XQuery, ($X, $Y, $Z) or <el>{$X}{$Y}{$Z}</el>.   Now, try to get Y back out, with $sequence[2] or $elem/*[2].  You might get: 

	Result
	X
	Y
	Z
	Gives

	Y itself
	1
	2
	3
	2

	Some part of Y
	1
	(2, “2a”)
	4
	2

	Z
	1
	()
	3
	3

	A part of X
	(“1a”,”1b”)
	2
	3
	“1b”

	A part of Z
	1
	()
	(“3a”,”3b”)
	“3b”

	Nothing
	()
	(2)
	()
	()

	An error (for element rep.)
	1
	attribute “y” {“why?”}
	2
	error


So, to make a general-purpose “set” data structure, one must encode the values in the set: sequences and attribute nodes can’t just get added casually.  Writing a general-purpose encoder seemed sufficiently tricky and inefficient that it didn’t seem worthwhile.  We decided to limit ourselves to a “set of string” data structure, for which sequences do work.   Of course, later we needed sets of XML elements as well, but fortunately neither sequences nor attribute nodes. 
XQuery’s Rationale for Sequences
XQuery’s choices about sequence flattening and attribute folding aren’t as insane as they sound. [XX]
There are some good reasons for sequence flattening.  First, it more or less corresponds to how information is structured in XML.  An XML element can have multiple child elements without other connective tissue, but the children are structured as a one-dimensional sequence.  No other arrangements are possible.   If there is any need to arrange some items in some other way in XML, it certainly can be done – by use of additional child tags for structuring.    It was an explicit design requirement of XQuery to match the XML data model as closely as possible, so nested sequences were out.  Sequence flattening is as good a way to exclude nested sequences as any, and better than most. 
Second, it makes some common sorts of queries easy. The programmer doesn’t have to fuss with nesting and denesting of results in queries: 

FOR x in some-nodes

RETURN children(x) 

will produce a list of all the children of some-nodes, without having to destructure a multiply-nested list structure.    It avoids an ambiguity about multiple FOR clauses: 

FOR a in some-As

RETURN

FOR b in some-Bs(a)

RETURN f(a,b)

returns a one-dimensional list; in a language without list flattening, it could be understood to produce a list of lists as well.   Finally, it neatly unifies searching for a single value with accumulating results: 

FOR a in some-As

WHEN it-is-the-right-one(a)

RETURN a

searches a list of A’s for the right one, and returns it.  Without list flattening, it would return the right one in a singleton list, requiring another operation to get it out.

Treatment of Child Elements

The strange behavior of sequences mostly resulted from sequence values which didn’t contain single items.  XML constructors can exhibit the same odd behavior even when every value is a single item.  Attribute values put in child positions (sometimes) become attributes of the parent, and are not retrieved by the expression that gets all the children.   

let $x := attribute troubles {1}

return <el> {$x} </el>

returns 

<el troubles=”1”/>

If there are several attribute nodes, they become attributes of the parent.   Order is always lost, since attributes have no ordering.  If two attribute nodes have the same name, only one should make it into the final element (though Galax did not honor this as of the time of writing): 

let $a := attribute a {1}

let $b := attribute a {2}

let $c := attribute b {3}

return <el> {$a}{$b}{$c} </el>

can produce one of two results, <el b=”3” a=”1”/>   or <el b=”3” a=”2”/>.  
Or, if the attribute value is in the wrong position (after a non-attribute), it will cause an error, as in: 
let $x := attribute troubles {1}

return <el> “doom” {$x} </el>

This behavior is entirely reasonable from one point of view: XML constructors are intended to construct XML, after all, and as such they have to have some convenient way to include attributes whose names and number are computed at runtime.   Saying that attribute nodes presented to the element constructor as children become attributes is certainly a simple way to arrange it.  We are not sure why only leading attributes are treated this way. 
Output Streams

XQuery, as is reasonable enough for a query language, produces only a single output stream.  We quickly realized that we needed multiple output streams – one for the output document, another for a report of problems, etc.  XQuery couldn’t do that.  It wasn’t a huge problem – the XQuery component could produce a big XML file with all the output streams as children of the root element, and a little XSLT program could split them apart – but by that time it seemed to be adding insult to injury.

Type System

XQuery has an extensive, almost a baroque, type system, based on the XML Schema type system.  XML Schema are twenty-three primitive types (integer, nonNegativeInteger, positiveInteger, unsignedLong, unsignedInt, …), forty-nine predefined types, two notions of inheritance, and so many other features that [XX, p.204] refuses to describe more than the basics.  XQuery uses a similar but improved system, full of distinctions between “anySimpleType” and “anyAtomicType” and splitting XML Schema’s “duration” into a more correct “year-month interval” and “day-time interval”.  These all make semantic sense – which is longer, a month or 30 days? – but the combined effect of having two large and slightly-different type systems to think about was overwhelming. 

We didn’t use the XQuery type system effectively.  Proper use of it requires an schema describing the types of all data.  For embarrassing historical reasons, we did have an schema describing the data, but the description was no longer proper schema: sometimes when the schema said “text attribute”, the output of AWB had child nodes instead.  

(As with the insane-sounding features of XQuery, this feature of AWB has its own sanity.  AWB was written in Java.  Originally, properties were simple Java types, Strings and integers and such, and the schema description was correct.  I persuaded the core implementers of the necessity of having XML-valued attributes, but it was convenient for the implementation to continue to represent them as Strings internally, and just convert them to XML on output.  The schema is correct for the internal representation, not the external; it could not be correct for both.  XQuery was working with the external one.  Writing a schema translator seemed like too much work.)

So, we used XQuery in the untyped mode, avoiding the type system entirely, or tried to. Which, of course, isn’t entirely possible – to get the value of an attribute, you first get the entire attribute, with $anElement/@itsAttribute, and then convert the answer into a string. 
Also we made the mistake of trying to put type annotations on some utility functions, so that they explained what arguments they took.  We thought that this would increase our sanity by preventing accidentally pushing a list on a stack of strings, which would have broken the stack routines.  In fact, it required a couple days of adding type annotations to surprising parts of the code – once types are used somewhere, they rapidly metastatize and need to be used everywhere.   In the end, it was much more work to add types than it would have been to debug mistaken pushes.  Our program and programming team weren’t big enough for such type information to be very helpful.

This is not a fair test of the type system, but having a type system certainly didn’t do us much good.

Java Types

Java, of course, has a refined and potent type system, with inheritance and interfaces and other useful tools.  As with any Java program, we used it heavily; there is no choice.  Presumably it saved a certain amount of trauma and confusion.  E.g., we were working extensively with two types called “node”: the nodes appearing in AWB models, and the nodes which describe the common behavior of XML data values. Having a strong type system presumably helped us keep the two from being confused.  (The untyped XQuery program had the same two kinds of entities, and we don’t recall any confusion there either.  At least the strong type system of Java guarantees  that we’re not confusing the two, while some chance of undetected confusion in XQuery remains.)
In all fairness, we should note that some parts of Java require what amounts to untyped programming.  Composite data structures like List and Map are defined to have elements of any object type (viz. anything but integers and booleans and such).  When working with these structures, one must be careful to put only the right sort of values into collections, and one is obliged to perform runtime type checks when one takes values out of them.  This is a small hole in the Java type system – a Weasel will never be treated as a Node, but the program might die of a runtime type error when a Weasel has gotten to a place where a Node is required. The Java designers are well aware of this flaw, and future versions of Java will avoid it to a large extent.   In any case, a bit of defensive programming, routine caution, and testing seem to have avoided problems with this. 
Debugging XQuery
XQuery (Galax, in particular) was the most painful system we have ever had to debug, worse than debugging PDP-11 code in binary using console lights and switch panels.   

This is not entirely XQuery’s fault.   Few language specifications discuss debugging or other pragmatic issues. (Perhaps they should.)   
This is not entirely Galax’ fault, either.  We were using a preliminary release of Galax.  The XQuery specification was being revised while we were working, and the underfunded Galax team was trying to track the changes and do actual research.  Building a debugger for Galax was, understandably, a very low priority.
Still, we are quite used to debugging programs without debuggers – even debugging functional programs. Admittedly, the functional programs we have debugged were a tenth the size. However, the document generator was structured as a confederation of small independent functions, most of which could instantly be seen as irrelevant to the problem being debugged.  (Indeed, it only happened once that something that was instantly seen as irrelevant was actually relevant.)  
The first issue in debugging XQuery was, of course, figuring out what was going on at all.  Quite often, XQuery would die with a message amounting to “Index out of bounds”, without any information of where in the program that had happened.  Tracing to figure out where the problem was fairly challenging: our best tool turned out to be the error($msg) function, which prints $msg on the console and kills the program.    Strategically-placed error calls let us do a binary search to locate the source of the program error.  XQuery, at that point, did not include any way to print a message or do other output: it took the philosophical point of avoiding side effects very seriously.  
After a certain amount of complaint, from us and from other early users, the XQuery team chose to be philosophically more flexible and add a trace function which prints its arguments and returns the value of the last one.   This was a vast improvement on error-based tracing, but it didn’t help enough. 
The easy code that should print intermediate results, adding the underlined line between the lines computing $x and $y, is: 
LET $x := something

LET $dummy := trace(“x=”, $x) 
LET $y := something-else

However, the Galax implementation was, quite reasonably for a query language, focussed on optimization.  In particular, it did dead-code analysis.    Simply adding the trace introduces a dead variable $dummy, which the Galax compiler helpfully optimizes away – along with the call to trace.  
So, we had to insinuate trace calls into non-dead code.  

LET $x := trace(“x=”, something)
LET $y := something-else

Or, if we want to print something that isn’t one of the variables we’re working with, we must resort to further subterfuge.   A bit of deceptive programming let us write a function which prints the first argument and returns the value of the second.  
In a fit of enthusiasm for suddenly having some access to XQuery’s computational state, we added a great quantity of tracing printing to the code the next time something needed to be debugged.  The extra flood of data let us fix the problem in minutes rather than hours.  Then, of course, we spent several hours trying to take the tracing printing, and only the tracing printing, out of the program.  Since they were insinuated in ways that tricked the compiler into thinking they did something, they were very close to actual critical code, and had to be removed by delicate surgery.
This was, ultimately, a transient problem, not a general problem of XQuery or even of Galax.  The optimizer would be fixed to recognize trace in the next version.  However, it was a very serious problem.  Debugging, even with tracing, was so difficult that it was generally easier and faster to rewrite a function from scratch rather than try to debug it.  
Caveat

After we switched from XQuery to Java, we never looked back.  Certainly some of our pain was due to using a preliminary version of XQuery, and certainly a more complete XQuery programming environment would have made our experience better.  Nonetheless, even if we had to reimplement it from scratch, we would not consider XQuery: the structural reasons alone make it a poor choice. 

The Moral
Programmers, like all other tool-users, abuse their tools horribly.  A tool carefully designed for one purpose will be used for a dozen quite different purposes, most of them only tangentially related to the original.  Our use or abuse of XQuery wasn’t particularly far off from its intended purpose: the kind of computation was very much in the XQuery style, though the size was rather larger. Surely people will try to use it for far stranger things.  Any little language is likely to find itself subjected to similar indignities, and best if it is prepared for them.  Here are the most intense lessons from the XQuery experience, which are likely to apply to other high-end little languages as well.

1. A little language should provide basic data structures.  A full library is probably not worth implementing – unless it can somehow be done in bulk by calling an extant library – but a few common structures will be very useful.  Lists and maps may well be enough.
2. A little language should provide mutable data structures, unless there is a good reason not to.  Many computations are easier to phrase with mutation than without, and, since fewer constructs are available in a little language, getting around the lack of mutation will often be harder than it might in a more general language.  Making the basic data structures mutable may be enough here.  In some cases (including XQuery) there are good reasons for not allowing mutation.  
3. A little language should provide basic control structures.   (XQuery got this one right.)  Iteration over the provided data structures; function definition and call (including recursion), if-then-else, while-loops if there is mutable data, and variable binding are probably enough.  
4. A little language should provide exception handling.   A very rudimentary form of exception handling will do – e.g., a single type “Exception” capable of holding a map with arbitrary data in it.  Exceptional cases are extremely common in many kinds of problems, and should be easy to handle.
5. A little language should have some debugging or tracing features.  User code will inevitably have errors.  Again, rudimentary ones will do – a print command, and, if you feel fancy, a simple tracing command.  
6. A little language should have a sensible and traditional syntax where possible.  Using “=” to mean “nonempty intersection”, as XQuery does, is unnecessarily confusing.  Using x for something other than a variable is most sensible in situations where the other use is far and away more common than variables.  XQuery had no choice in either matter, but your little language may. 
7. Aside from the above, a little language should focus on its main purpose.  XQuery was a delight to use when dissecting and reassembling XML data.  Simple dissections and constructions were several times harder in Java, and complex ones were much worse than that.  Ultimately, the main point of a little language is to be very good at some topic, in a way which would be out of place in a big language.  This should not be forgotten, even when one is implementing ostensibly unrelated constructs for broad use. 
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� For one thing (of general applicability), a function might legitimately return an <error> tag as a value – e.g., a function computing the first element of a list. For another (limited to XQuery), if the function were saying what went wrong, and including the error-causing information as data, and the error-causing information were attributes with the same name, then they’d be attributes  of the <data> tag (<data attrName=”val”>), rather than children, and one of them would get lost.


� We must distinguish between an intended answer of a function f, and a return value.  The intended answer is the information that the caller wants.  The return value is the value that f actually returns.  Sometimes the return value will be the intended answer.  Sometimes the return value will include more information than just the intended answer: e.g., it might be a structure including a flag indicating whether the computation was successful, plus the intended answer if it was.  For example, in a strongly-typed language, the function f, where f(s) is the substring of s after the first “/” or an error if there is no “/”,  can’t simply return a string. The intended answer can be any string, leaving no values usable for errors. So, the return value will must be some composite data structure, including but not equal to the intended answer.  





