
NaXDB – Realizing Pipelined XQuery Processing
in a Native XML Database System

Jens Hündling, Jan Sievers and Mathias Weske
Hasso-Plattner-Institute for IT-Systems-Engineering

at the University of Potsdam, Germany
{jens.huendling|jan.sievers|mathias.weske}@hpi.uni-potsdam.de

ABSTRACT
Supporting queries and modifications on XML documents is a chal-
lenging task, and several related approaches exist. When imple-
menting query and modification languages efficiently, the actual
persistent storage of the XML data is of particular importance.
Generally speaking, the structure of XML data significantly differs
from the well-known relational data-model. This paper presents the
prototypical implementation of NaXDB, a native XML database
management system (DBMS). A native approach means the XML
data is stored as a hierarchical tree of linked objects. NaXDB is im-
plemented as a MaxDB by MySQL kernel module and thus inherits
several DBMS functionality. Furthermore, NaXDB uses object-
oriented extensions of of MaxDB by MySQL to store the tree of
linked objects. NaXDB implements a large subset of the query
language specification XQuery 1.0 as well as XUpdate for modifi-
cation. The design and architecture of the prototypical implemen-
tation is presented, and concepts for query processing within the
database server are discussed.

1. INTRODUCTION
The significance of semi-structured data in the context of the

eXtensible Markup Language (XML) is growing rapidly, with ap-
plications in advanced text processing, Web services technology,
information exchange across organizational boundaries and Enter-
prise Application Integration, to name a few. XML documents
often contain both semi-structured text data (e.g., sections, para-
graphs, formatting) as well as business related well structured data,
like order data. XML documents are adequately represented in a
tree-structured way with an optionally defined schema. Managing
XML data is a challenging task and several related approaches ex-
ist [6]. This paper reports on NaXDB, a recent development that
aims at providing native storage of XML documents as well as
XQuery [14, 4] and XUpdate [17] functionality. NaXDB is based
on the open-source DBMS MaxDB by MySQL [20] and is a joint
effort between the University of Potsdam and SAP Labs Berlin,
who develop MaxDB. This paper presents design and implementa-
tion concepts of NaXDB.

Since an XML database system must handle different document

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

schemas and accept documents with unknown structure, efficient
automatic adoption of evolving schemas from incoming informa-
tion is vital. In addition, it is necessary to efficiently adapt the
evolving schema of incoming information with minimal manual
intervention. This significantly differs from traditional relational
DBMS, where database schema evolution is rare and typically man-
aged by database administrators. Due to these reasons, NaXDB
uses a native approach [6], i.e. the XML information is stored as a
hierarchical tree of nodes. NaXDB implements an huge subset of
the query language specification XQuery 1.0 [3] including XPath
2.0 [2] for navigation as well as XUpdate [17] for manipulation.
Remarkably, several implementations of XQuery exist by now, but
only some are real database management systems offering typical
functionality like multi-user access, transaction handling, recov-
ery, etc. Among those real XML DBMS only a few use a native
approach, but are rather transforming XML data into relational ta-
bles. NaXDB is implemented specifically for a native XML storage
by using an object-oriented persistent storage extension of MaxDB
called Object Management System (OMS) [1]. Thus, it is possible
to directly store the XML tree and still remain tightly integrated in
the MaxDB server as a kernel module [1].

The rest of this paper is organized as follows: Section 2 intro-
duces the system architecture and addresses the responsibilities of
the components as well as their interaction. The architecture of
the current prototypical implementation is presented in Section 3.
Pipelined query processing, problems and solutions based on Na-
XDB’s native object-oriented storage are discussed in Section 4 and
Section 5 depicts an example and thereby accentuating the internal
tree-like concepts for handling XQuery statements. The paper con-
cludes with a discussion and an outlook on future work.

2. NAXDB SYSTEM OVERVIEW
The system architecture of NaXDB is presented in Figure 1. The

system has three main subsystems: 1. ADatabase Client: A graph-
ical user interface that enables users to write queries and receive
results. 2. TheDatabase Serveris the core subsystem of NaXDB;
it includes a number of components that will be discussed in the
remainder of this paper. 3. ThePersistent Object Manageris re-
sponsible for persistently storing XML data.

At a high level of abstraction, the interaction between these sub-
systems are as follows: The user accesses the graphical user in-
terface and formulates a query. The query is then transferred to
the database server, which in turn processes the query. Finally, the
database server generates code and uses the persistent storage sub-
system, which returns the results that are transferred back to the
client. As already mentioned, the storage subsystem is based on
an object oriented extension of MaxDB and thus benefits from the
advantages of native XML storage [6]. Furthermore, NaXDB in-

herits comfortable database features from MaxDB. For instance,
MaxDB handles the persistent storage on hard-disk pages and uses
Multi Version Concurrency Control (MVCC) for concurrent multi-
user access and transaction processing. Following MaxDB’s build
strategy, NaXDB can be deployed to Windows platforms as well as
numerous UNIX flavors, including new 64 bit architectures.

NaXDB offers two communication options: A WebDAV inter-
face and JDBC stored procedures. Using WebDAV [22], the user
can navigate in the collections like in a file system. By indicating
files to be imported "as XML" the NaXDB server stores them in the
XML repository if they are well-formed. Furthermore, applications
can send queries to NaXDB via JDBC stored procedures.

3. IMPLEMENTATION OF NAXDB
The prototypical implementation of NaXDB is explained in this

section. This will be done by explaining the key components of the
architecture depicted in Figure 1 and their query processing interac-
tion. Thus, the following addresses the design and implementation
of the Request Dispatcher, the query parsing and translating com-
ponents, the Query Execution Engine, and the persistence manage-
ment. The section also points to interesting features and concepts
of NaXDB.

Persistent Object Storage Manager

Database Server

XUpdate Parser

XQuery Parser

XPath

Parts

JDBC

Request Dispatcher

Query Context

Query Execution Engine

OMS Storage Manager

C
ommand
 Tree

Optimizing

Translator

A
bs

tra
ct

 S
yn

ta
x

Tr
ee

MaxDB Object Management System (OMS)

XML

Parser

Temp. DOM

Database Clients

Static

Context

Dynamic

Context

DOM Handler

WebDAV

Legend:

 Communication Channel Storage

 Read/Modify Data Access Active Component

Figure 1: System architecture of NaXDB

3.1 Request Dispatcher
TheRequest Dispatchercomponent provides stored procedures

for XQuery and XUpdate functionality and handles WebDAV re-
quests. Additionally, the transaction handling is done by the Re-
quest Dispatcher by using MaxDB’s core functionality. It also of-
fers enhanced methods for query handling, e.g. resolution of docu-
ment identifiers.

3.2 Parser Components
NaXDB’s parser has two components: AnXQuery Parserand an

XUpdate parser. Since XUpdate [17] is an XML dialect, its XML
structure is parsed using the open-source XML parser expat [7] and
the XPath parts of XUpdate are parsed using the XQuery parser.
The XUpdate statements are mapped to the same (tree-structured)
internal representation, i.e. the internal representation is capable of
modifications as well as XQuery operations. From now on we will
not further distinguish between XUpdate and XQuery statements.

To handle the syntactical complexity of XQuery, the XQuery
parser was built using the ANTLR Parser Generator [19], which
turned out to be a quite helpful tool. For using ANTLR, we have
developed an XQuery grammar with relatively little effort and pro-
duced a fast and fully featured XQuery parser. One interesting fea-
ture of the NaXDB parser is its ability to handle the ambiguity of
expressions, emerging with non-reserved keywords. For example,
the keywordfor is not a reserved word in XQuery. Thus, element
names as well as user defined functions may be namedfor as well;
this can be recognized by the NaXDB parser correctly.

As a first step to generate an internal representation, the parsers
transform the query strings to an abstract syntax tree (AST). The
AST is inspired by the XQuery Core language assumed in the for-
mal semantics of XQuery [8], but still closer to XQuery. Some
equivalence rewritings are already made by the XQuery parser to
reduce complexity of the query. Additionally, this rewriting de-
creases the possible number of operators of the internal algebra,
which is produced in the next processing step, e.g.where -state-
ments are transformed toif -statements, but predicates are left as
they are. The parser output is an AST, which is a equivalent repre-
sentation of the original query. Thus, XUpdate and XQuery state-
ments are both generating trees based on the NaXDB internal lan-
guage.

3.3 Optimizing Translator
The Optimizing Translatortakes the AST as input and recur-

sively traverses it building theCommand Treeat the same time.
While translating the AST into a Command Tree, some optimiza-
tions are accomplished. For instance, the Optimizing Translator
is able to detect whether and when sorting or duplicate removal is
absolutely necessary, thereby following the ideas presented by Jan
Hidders and Philipp Michiels in [12]. This can save a lot of time,
because otherwise the intermediate results have to be sorted after
every axis step, following the XQuery specification [3]. Moreover,
static XQuery errors can already be detected by this component.

In difference from many other solution, NaXDB uses an tree-
structured internal query representation. This offers a key advan-
tage: code execution through traversal of the Command Tree’s ob-
jects. For each operator of the language a specific class containing
the processing logic exists. The Optimizing Translator instantiates
these classes corresponding to the query and the resulting objects
build the Command Tree. The Query Execution Engine starts the
traversal by calling the evaluation method of the root object (i.e.
root node) of the Command Tree. Each tree node knows how to
proceed and when to evaluate its children. While XQuery as well
as the AST generated from XQuery is of functional, declarative na-

ture, the Command Tree has imperative character; a sample Com-
mand Tree and processing will be described in Section 5.

3.4 Query Execution Engine
TheQuery Execution Engineprocesses the Command Tree. Each

node leads to a single operation, e.g. get the parent of the actual
node in the document or calculate the sum of the results of the next
two Command Tree nodes. While doing so, the engine uses the
Query Context data structure, which holds information related to
the current query, including some proposed by the XQuery specifi-
cation [3]. As defined in the specification, static information, like
the ordering mode, has already been set in the static analysis phase
by the Optimizing Translator. Dynamic information, like the con-
text position, is set by the Query Execution Engine itself. Besides
the information mentioned in the specification, the Query Execu-
tion Engine uses the Query Context to store internal information
needed for more than one processing step.

NaXDB implements a pipelining XQuery processor [15, 11], i.e.
it immediately processes thenextsubexpression for each item re-
sulting from thecurrentsubexpression. In contrast, a non-pipelin-
ing processor first collects all items of the first subexpression in
memory and then iterates them for the next subexpression. This
can lead to enormous intermediate results in the memory. Espe-
cially using axes likedescendant-or-self it would quickly
result in holding the document as a whole – may be more than once
– in memory. As we experienced, the object-oriented execution of
the tree-structured query algebra as explained above fits very well
into the pipelined query processing; the advantages and also some
problems are discussed in Section 4.

Additionally, NaXDB supportsearly termination, which enables
the Query Execution Engine to stop the processing of expressions
[5] immediately, when the result can be computed. When a boolean
value must be computed, e.g. in conditional expressions in anif
statement, the evaluation stops, when a node is found. Finding any
more nodes or atomic values does not change the result.

Lazy evaluation of variables[15] is another feature of our imple-
mentation. Lazy evaluation implies that only those variables which
are actually used during the execution of a query will be evaluated.
In some cases, this technique leads to faster processing and less
memory usage; consider the example in Figure 2.

declare variable $doc := doc(’book.xml’);
declare variable $en := $doc//part[@lang=’en’];
declare variable $de := $doc//part[@lang=’de’];

if($doc/@lang = ’en’) then $en else $de

Figure 2: Lazy Evaluation Example

Here only one variable is used; which one is determined at run-
time. Using lazy evaluation the Query Execution Engine evaluates
a variable only if and exactly when it is actually used. Therefore,
lazy evaluation is a useful technique to improve the performance of
XML databases.

3.5 Data Management
The native storage of XML data is realized using the Object

Management System (OMS), which is based on the liveCache tech-
nology of MaxDB. It allows storing variable and fixed size objects
of arbitrary structure and thereby storing XML data directly as a hi-
erarchical tree of linked objects. Generally speaking, a native stor-
age means that for each XML element, attribute etc. in the XML
tree an object is created in the database. As mentioned in section 1,
this allows to store all kinds of XML documents, even with un-

known structure and without schema definitions. Each object has
an unique object identifier (OID) which is defined by the OMS and
these identifiers are used for linkage between objects. In NaXDB
the Persistent Object Storage Manager (POSM) encapsulates this
functionality.

NaXDB has two key optimizations implemented in the POSM:
First, the structure of the nodes is stored separately from the con-
tent of the nodes. This is profitable especially for navigation, not
because the potentially huge node has to be handled, but only a
small object containing an OID, a minimal set of links allowing bi-
directional-navigation, and the link to a content-object. With this
approach it is possible to cluster all structure-relevant objects on a
small number of pages and therefore gain further performance im-
provements for navigation. The idea is to keep (a big part of) the
XML-structure in memory, which leads to accelerated navigation.
Caching of these structure-objects is automatically handled by the
POSM. The second optimization is storing all qualified names and
namespaces in a global hash table, which can be cached. Especially
in data-centric documents a lot of redundancy can be avoided, e.g.
the element and attribute names are stored only once. The OID’s of
the structure-objects are stored in the table, which in turn point to
the content-objects. Additionally, performance improvements are
achieved by comparing the hash values.

Furthermore, the OMS offers multi version concurrency control
(MVCC), which provides every transaction with a consistent view
on the XML data. Each transaction gets a version number and
works on a consistent snapshot of all objects. As well known from
database theory, new versions of objects can be created and only if
two transactions modify the same object, one has to be rolled back.
This enables multi user read access for NaXDB as well as multiple
users to manipulate the same XML document. As long as the users
do not change the content or the structure of the same node, the
queries will succeed. Otherwise an error message will be returned
and the transaction is rolled back.

For convenience reasons, an intermediate Data Object Model
(DOM) layer is internally provided by theDOM Handler. Thus, the
Query Execution Engine handles the persistent objects as known
from DOM. These objects are also light-weight structure-objects
pointing to the content objects. ATemporary DOMholds such
DOM objects with references to non-persistent POSM objects. The
Temporary DOM is used for two reasons: 1.) For constructed el-
ements or attributes from XQuery statements. 2.) For new nodes
from an XUpdate statement. In the first case these nodes are au-
tomatically deleted after the transaction finishes and the result is
returned; in the second case the nodes become persistent POSM
objects, when the XUpdate statement succeeds. In case ofinsert
or update statements, the new objects are inserted (or updated) in
the tree. This means, new (versions of) structure-objects are created
and the references of the neighbour nodes are updated. By using the
MVCC mechanism, the POSM creates new versions of these neigh-
bouring objects and thus, already running transactions can still read
the old structure. This is especially useful, because now transaction
handling is independent from query processing. With this approach
it is further possible to provide direct access to a DOM layer, which
would allow applications to navigate on persistent XML documents
like on a DOM representation in main memory.

4. LESSONS LEARNED FROM NAXDB
During the implementation of NaXDB we learned found and

solved some of XQuery’s difficulties. Especially regarding pipe-
lined query processing, which is not part of the specification, nu-
merous severities became visible. This section discusses some prob-
lems and solutions.

4.1 Pipelined XQuery Processing
The XQuery specification as well as the Formal Semantics [8]

suggest a non-pipelining approach for XQuery evaluation, which is
straight forward and intuitive at a first glance. This implies to han-
dle intermediate result sequences directly, i.e. analyze and process
them directly. Therefore, the intermediate results have to be held in
memory, which possibly needs enormous resources. Without opti-
mization, intermediate results can contain the complete document,
sometimes even more than once. For instance, queries with the
descendant-or-self axis might not be problematic for a sin-
gle, rather small document, but in a production environment, a great
amount of XML data is processed concurrently and documents can
be large. Obviously, holding intermediate results in the memory
leads to a major performance drawback. Therefore, a pipelining
approach attempts to minimize the need of memory during query
processing. This is done by avoiding to build intermediate result
sequences, i.e. the pipelining approach tries to evaluate the next
expression exactly when an item of the currently processed expres-
sion is found.

doc(’book.xml’)/article/chapter

Figure 3: Intermediate Results Example

When processing the query in Figure 3, for eacharticle ele-
ment found, the NaXDB Query Execution Engine evaluates a child
axis fetch, searching for child elements namedchapter . If one
is found, it is added to the final result sequence. Thus, there is no
sequence of articles built at any time during the query processing.
Nevertheless, implementing the pipelining approach leads to some
difficulties.

4.2 Problems of Pipelined XQuery Processing
Several XQuery expressions arebreaking the pipeline. For in-

stance, parenthesized expressions naturally require to evaluate the
intermediate result completely. Additionally, set expressions like
union demand both resulting sequences of the subexpressions to
be held in memory. In both cases the Query Execution Engine has
to evaluate the corresponding expression completely, before eval-
uating the next expression. Thenceforwards, the query processing
can take place in pipelining mode again.

doc(’book.xml’)/article/chapter[last()]

Figure 4: The last() -Function Example

Sometimes specific information about intermediate results are
needed but are missing in pipelined processing, like the example in
Figure 4 illustrates. The query uses the build-inlast() -function
from the XQuery function library. This function returns the po-
sition of the last item in the current sequence (here: sequence of
chapter elements). Since XQuery numbers the first item with1,
the last position number equals the item count of the sequence. To
get this count, all items of the sequence must be retrieved before
the predicate containing thelast() -function can be computed,
i.e. the pipeline has to be broken. In NaXDB this is realized in
the static analysis phase, which leads to a reorganized Command
Tree. The resulting Command Tree is equal to the tree of the query
shown in Figure 5.

In contrast to thelast() -function theposition() -function
as well as numeric predicates are only problematic in certain sce-
narios. To be be more precise, these operations only brake the

doc(’book.xml’)/article/(chapter)[last()]

Figure 5: NaXDB’s interpretation of the last() -Example

pipelining, when combined with unordered sequences. The ex-
amples in Figure 6 use numeric predicates. The Query Execution
Engine does not count all occurrences of items (herechapter
elements), but tests if the position of the current item equals the
given number of the numeric predicate. Nevertheless, if the cur-
rent expression results in an unordered sequence, the intermediate
result collects the items in an incorrect order and thus the Query
Execution Engine assumes wrong position numbers.

On that score, it is vital to be able to determine if the correct or-
der of a sequence can be guaranteed. If so, the query processing
can be pipelined, but otherwise for a numeric predicate the corre-
sponding sequence must be sorted before evaluating the predicate.
Obviously, all items of a sequence are needed to bring it into docu-
ment order. To sum up, only numeric predicates that lead to sorting
are breaking the pipeline.

doc(’book.xml’)/article/chapter[2]
doc(’book.xml’)/article/preceding::author[1]

Figure 6: Numeric Predicates-Examples

In the first example in Figure 6, no ordering operation is needed.
The second query contains a step on the child axis followed by
a step on the preceding axis. This results according to [12] in
an unordered sequence. This is handled by NaXDB in the static
analysis phase, i.e. by the Optimizing Translator, which inserts
anOrder Result Sequence operator before the operator for
numeric predicate evaluation. A description of the sorting logic is
presented in the next section.

4.3 Sorting in Pipelined XQuery Processing
The XQuery specification exacts the results of axis steps and set

expressions (likeunion) to be in document order. Document order
is informally defined as

”...the order in which the nodes appear in the XML
serialization of a document [3].”

Since ordering means sorting of a sequence of possibly numer-
ous nodes, every implementation tries to minimize the number of
ordering operations. Jan Hidders and Philip Michiels developed
an automaton, which decides if the result of a given sequence of
axis steps is in document order or not [12]. NaXDB implements
such an automaton to minimize the number of ordering operations.
However, further information is needed to determine if at a given
step of processing, the intermediate result should be sorted or not.
Apparently, an intermediate result in document order does not re-
quired sorting. Nevertheless, some expressions require sorting in
any case, as mentioned above.

Sorting every time the automaton reports an intermediate result
to be in incorrect order, is not appropriate. In some cases an un-
ordered sequence gets ordered again after the next axis step [12].
Additionally, it is irrelevant if an intermediate result is in document
order or not. For instance, for expressions computing the effec-
tive boolean value (EBV) [3], the order within the sequence is not
relevant. An example for a realization in NaXDB is the condi-
tional expression ofif -expressions, where the Query Execution
Engine does not sort intermediate results (except the cases men-
tioned above).

Because every ordering operationbreaks the pipeline, it lessens
the performance advantage of pipelined XQuery processing. Na-
XDB solves this by determining beforehand whether sorting is nec-
essary or not using the depicted technique. Nevertheless, if sorting
in necessary, this is done using the structure-objects. For instance,
the correct order of two nodes can be determined by stepping up
the parent axis of the tree until a common parent is found. Since
the structure is realized by light-weight objects in memory, this can
be done efficiently and only the OID’s have to be compared.

5. EXAMPLE
In this section, the sample query in Figure 7 will be used to ex-

plain the Command Tree and the Query Execution Engine of Na-
XDB. The sample query selects specific book from thebib.xml
file in a NaXDB repository and returns a number of specific chapter
elements.

for $book in doc(’bib.xml’)/bib/book[abstract]
where $book/author = ’Paul Meier’
return

$book/chapter[5]/preceding-sibling::chapter

Figure 7: Sample XQuery

N1

N2
N3

N4 N5

N6 N7 N8

N9

N10 N11

Figure 8: Sample Command Tree - Part 1

In Figures 8 and 9 the Command Tree resulting from the sample
query is shown. These figures are created by using a debugging

feature of NaXDB that exports a graphical representation of the
Command Tree. For better readability, labelsN1-N18 are added.
It has to be mentioned that the tree is actually split in two parts to
fit in the paper. The Command Tree starts in the root node of Fig-
ure 8 (with the labelN1). From the rightmost leaf-node of this tree
(N8), the execution goes on with the root node of Figure 9 (N12).
Each node has a textual representation of the operation in the top
half of the node andline:column (of the query statement) in
brackets. The bottom half of the node shows flags and parameters.
The remainder of this section describes the meaning of the graph-
ical representation and points to used optimization features shown
in the sample trees.

Generally speaking, the processing logic imitates a top-down,
from left to right traversal of the tree. Therefore, the evaluation
starts at the Filter Expression root node (N1) of Figure 8. All items
are collected that are returned by theGetDocument operator (N2,
realizing thedoc() -function) and for each itemN3 is evaluated.
N3 is the beginning of the path expression starting with a child step
(N3) and aNameTest of this node forbib . The path continues
with a steps on the child axis (N5), testing forbook and starting
a predicate (N7). This predicate tests the existence ofabstract
(N10) children (N9). If the predicate is fulfilled, i.e. a satisfying
node is found, it can be processed (N11), which in turn continues
the traversal at nodeN8. To sum up, the first part of the Command
Tree (Figure 8) represents the binding variable sequence of thefor
expression.

For each item found in the expression so far, theProcessItem
operator (N8) calls theForStep node (N12 in Figure 9). N12
binds the context item to the variablebook and evaluates its child.
The IfExpr operator (N13) represents thewhere -clause. The
condition expression starts withN14and thethen -expression with
N15. Since noelse -expression is needed representing thewhere -
clause, an empty expression with no children (N16) is the last child
of N13.

Futhermore, two nodes of the Command Tree are of particular
interest:

1. N18 in Figure 9 is anOrderResultSequence operator.
This is necessary, because the path expression in line 4 of the
query possibly returns an unordered sequence ofchapter -
elements. Since the element at position 5 is needed, a result
sequence in correct order is necessary here.

2. TheAxisFetch nodeN9 underneath thePredicate op-
erator (N7 in Figure 8. TheearlyTermination prop-
erty is setTRUE, because it is sufficient to find exactly one
abstract element to decide whether thebook element
should be returned or not. This means the predicate is ful-
filled when the firstabstract element is found.

Given this information, the explanation of the other nodes is
straight forward. The example shows how the Query Execution
Engine handles XQuery statements by traversal of the Command
Tree. It has to be mentioned at this point that this leads to navi-
gation on the structure-objects, comparisons using the hash table
for global names and fetching the content-objects as in Section 3.5.
Thereby navigating in the object tree of the XML document is im-
plemented. Additionally, optimizing features are realized within
the Command Tree of NaXDB.

6. DISCUSSION AND OUTLOOK
NaXDB is a prototypical implementation of a native storage for

XML data and supports advanced XQuery and XUpdate process-
ing. XQuery is a powerful and complex query language aimed at

N12

N13

N14 N15
N16

N17

N18

Figure 9: Sample Command Tree - Part 2

XML data. As we recognized during the NaXDB project, an effi-
cient implementation of some aspects of the XQuery specification
is a challenging task. A native storage of XML data as shown in
Section 3 is advantageous since an intuitive execution of naviga-
tion steps can be realized, as explained in Section 4 and depicted
by an example and Section 5. Hence, NaXDB realizes a pipelined
query processing approach and handles several difficulties of this
approach, e.g. sorting the intermediate results using the tree struc-
ture. The NaXDB Query Execution Engine implements several op-
timizing features; a few where mentioned in this paper.

Additionally, NaXDB is a fully-fledged DBMS by using sev-
eral features of MaxDB by MySQL, e.g. MVCC for objects. Op-
posed to existing XQuery implementations, NaXDB features very
strict whitespace handling by storing the XML Infoset as native
tree and realizing a persistent XML storage that allows concur-
rent modifying access to the stored documents. The current version
supports a huge subset of XQuery, including path expressions for
all axes, arithmetic, comparison and logical expressions as well as
for let where return statements. NaXDB does currently
not support XML schema processing. Additionally, calls to (pre-
defined) functions are implemented (although the function library
is not completely implemented). NaXDB’s implementation leaves
out typing statements, likecast or typeswitch . This is sched-
uled for future work.

Next to realizing the above mentioned, a future step should be
exploitation of benchmarks on our implementation and compare
the results with other native XML-DBMS, like Software AG’s Ta-
mino [10] or Natix [18], relational DBMS with XQuery support
and XQuery implementations like Saxon [16], BEA/XQRL [11]
and Galax [9]. This could also lead to an analysis of strengths
and should identify performance bottlenecks. Additionally, XML

database connectivity should be concerned: Currently NaXDB uses
JDBC and a next step will be to exploit a common XML repository
API like the open source project XML:DB API [21] or the XQuery
API for Java (XQJ) [13]. Further steps could lead to implement-
ing advanced optimization techniques using views, static typing,
indexes and statistics, which could be integrated in the existing ar-
chitecture and concepts.

Acknowledgements
The authors would like to thank the rest of the NaXDB team: Anja
Bog, Christian Braune, Kay Hammerl, Martin Probst, Johannes
Scheerer and Lars Trieloff. We also thank Stefan Baier, Daniel
Kirmse, Markus Özgen and Jürgen Primsch of the SAP Labs, Berlin
for their encouraging support.

7. REFERENCES
[1] MaxDB by MySQL.

http://www.mysql.com/products/maxdb/ , 2005.
[2] A. Berglund, S. Boag, D. Chamberlin, M. Fernández,

M. Kay, J. Robie, and J. Siméon. XML Path Language
(XPath) 2.0.http://www.w3.org/TR/xpath , Feb.
2005. W3C Working Draft 11 February 2005.

[3] S. Boag, D. Chamberlin, M. Fernández, D. Florescu,
J. Robie, and J. Siméon. XQuery 1.0: An XML Query
Language.http://www.w3.org/TR/xquery/ , Feb.
2005. W3C Working Draft 11 February 2005.

[4] M. Brundage.XQuery – The XML Query Language.
Addison-Wesley, 2004.

[5] D. Chamberlin. Xquery: An xml query language.IBM
Systems Journal, 41(4):597–615, 2002.

[6] A. B. Chaundri, A. Rashid, and R. Zicari, editors.XML Data
Management – Native XML and XML-Enabled Database
Systems. Addison-Wesley, 2003.

[7] J. Clark. The Expat XML Parser.
http://expat.sourceforge.net/ .

[8] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and
XPath 2.0 Formal Semantics.
http://www.w3.org/TR/xquery-semantics/ ,
Feb. 2005. W3C Working Draft 11 February 2005.

[9] M. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur.
Implementing XQuery 1.0: The Galax experience. InProc.
of the VLDB 2003, pages 1077–1080, Berlin, Germany, Sept.
2003.

[10] T. Fiebig and H. Schoning. Software ag’s tamino xquery
processor. InFirst International Workshop on XQuery
Implementation, Experience and Perspectives (XIME-P),
June 2004.

[11] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The bea/xqrl streaming xquery processor. InProc. of the
VLDB 2003, pages 997–1008, 2003.

[12] J. Hidders and P. Michiels. Avoiding Unnecessary Ordering
Operations in XPath. InProc. of the 9th Int’l Workshop on
Database Programming Languages (DBPL), Potsdam,
Germany, Sept. 2003.

[13] Java Community Process. XQuery API for Java (XQJ) 1.0
Specification.http://jcp.org/ , May 2004. Early Draft
Review May 2004.

[14] H. Katz, editor.XQuery from the Experts – A Guide to the
W3C XML Query Language. Addison-Wesley, 2004.

[15] M. Kay. XSLT and XPath Optimization. InProc. of the XML
Europe 2004 conference, Amsterdam, The Netherlands,
2004.

[16] M. Kay. Saxonica.com - Saxon XSLT and XQuery
processor.http://www.saxonica.com/ , 2005.

[17] A. Laux and L. Martin. XUpdate.
http://xmldb-org.sourceforge.net/
xupdate/ , Sept. 2000. Working Draft September 2000.

[18] N. May, S. Helmer, C. C. Kanne, and G. Moerkotte. Xquery
processing in natix with an emphasis on join ordering. In
First International Workshop on XQuery Implementation,
Experience and Perspectives (XIME-P), June 2004.

[19] T. Parr. ANTLR, ANother Tool for Language Recognition.
http://www.antlr.org/ , 2005.

[20] SAP AG. MaxDB – The Professional DBMS. Available at:
http://www.mysql.com/products/maxdb/ , Feb.
2005. Version 1.0.

[21] K. Staken. XML:DB API.
http://xmldb-org.sourceforge.net/ , Sept.
2001. Working Draft September 2001.

[22] The Internet Society. HTTP Extensions for Distributed
Authoring – WebDAV.http://www.webdav.org/ ,
1999.

