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ABSTRACT
We report on a compilation procedure that derives rela-
tional algebra plans from arbitrarily nested XQuery FLWOR
blocks. While recent research was able to develop relational
encodings of trees which may turn RDBMSs into highly ef-
ficient XPath and XML Schema processors, here we describe
relational encodings of nested iteration, variables, and the
item sequences to which variables are bound. The devel-
oped techniques are purely relational in more than one sense:
(a) we rely on a standard (or rather: classical) algebra that
is readily supported by relational engines, and (b) we use re-
lational concepts like functional and multivalued dependen-
cies to significantly simplify the emitted plans. This work
blends well with the mentioned tree encodings and thus con-
tributes a further important building block to investigations
into XQuery processors based on relational database tech-
nology.

1. INTRODUCTION
In a sense, the relational query processing model may be

described as rather simplistic, on multiple levels: on the log-
ical level, sequences of tuples (tables) are fed into algebraic
operators which generate such sequences again, and the im-
plementations of these operators work best if the tuple se-
quences are stored in a physically contiguous (secondary)
memory fragment. While this simplicity is the key to the
efficiency of relational query engines, it also prescribes a
rather restrictive mode of data access and processing.

It is all the more remarkable that the database research
community succeeded in turning RDBMSs into efficient pro-
cessors for originally non-tabular tree-shaped data: trees are
relationally encoded such that core operations on this data
type, e.g., path traversals or the validation of a tree’s struc-
ture, are mapped onto sequential tuple scans which rela-
tional engines inherently support well.

Such tree encodings have primarily been used to devise re-
lational XPath processors [9,11], but they may also yield effi-
cient implementations of XML Schema validators [6]. Among
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other benefits, the resulting systems inherit the scalability
of the underlying relational back-ends [3]. It is legitimate to
hope that this technology may be developed into full-fledged
XQuery implementations, given that we can find relational
ways to also express XQuery concepts beyond XPath axis
traversals.

To this end, this paper does not talk about XPath evalu-
ation at all but shifts focus to the central XQuery language
feature, the for-let-where-order by-return (or FLWOR)
block [2]. The presence of arbitrarily nested iteration as
well as the possibility to bind and then refer to variables in
expressions presents an interesting technical challenge since
the compilation target—relational algebra—is a combinator-
style language that lacks any notion of explicit iteration or
variables.

In Section 2, we start off by sketching the ideas which
underly the compilation of nested XQuery FLWOR blocks
into relational algebra. The canonical compilation yields re-
lational plans featuring particularly simple instantiations of
relational operators, e.g., all occurring joins are equi-joins,
but of significant size and certain redundancy: the item se-
quence representation is denormalized (Section 3). Due to
the inherent simplicity of the plans, however, we are able to
use a simple form of plan analysis to detect, among other
properties, induced functional and multivalued dependen-
cies which we then use in highly effective peep-hole-style
plan simplification (Section 4). We will also sketch how
the analysis of such dependencies may enable non-syntactic
XQuery join detection (Section 5). The resulting relational
XQuery processor supports the XQuery dialect sketched in
Table 1 and is able to evaluate the XMark benchmark [12]
queries on document sizes beyond 1 GB in interactive time
(Section 6).

2. RELATIONAL FLWORs
We will now describe techniques which enable the compi-

lation of the mentioned XQuery dialect (Table 1) into the
relational algebra shown in Table 2. Besides the row number-
ing operator %1, this constitutes a classical, rather restricted
relational algebra variant. We will discuss the specifics of
some operators as we go.

XQuery operates with ordered, finite sequences of items as
the principal data type. Items either represent atomic val-
ues (of one of the XML Schema atomic types, e.g. string,
decimal, positiveInteger) or nodes. For a relational rep-
resentation of an atomic value v, we choose an implementa-

1Many relational engines implement % in terms of the
DENSE_RANK operator defined by SQL:1999 [7].



atomic literals document order (e1 >> e2)
sequences (e1,e2) node identity (e1 is e2)
variables ($v) arithmetics (+,-,*,idiv,. .)
let $v := e1 return e2 (general) comparisons (=, eq, . .)
for $v [at $p] in e1 return e2 Boolean connectives (and, or)
if (e1) then e2 else e3 user-defined functions
e1 order by e2,. .,en fn:doc(·), fn:root(·), fn:data(·)
unordered {e} fn:id(·), fn:idref(·)
element {e1} {e2} fn:distinct-values(·)
attribute {e1} {e2} op:union(·), op:intersect(·)
text {e} fn:count(·), fn:sum(·), fn:max(·)
XPath (e1/s[[e2]]) fn:position(), fn:last()
typeswitch (e1) case [$v as] t return e2. .default return en

Table 1: Supported XQuery dialect (s denotes an
XPath step, t a sequence type). Only a subset of
the built-in functions (namespaces fn, op) shown.

Operator Semantics

σa select all rows with column a = true
πa,b:c,d:v projection onto col.s a, b, d, no duplicate removal

(rename c into b, new constant col. d of value v)
%a:(b,..,c)/d (group rows by d,) new col. a numbers rows densely
%a:(b,..,c) starting from 1 according to order given by b, . . , c

× Cartesian product
1p join with predicate p.
∪ , \ disjoint union, difference

δ duplicate elimination
¸a:(b,..,c) apply ◦ ∈ {∗, =, <, . .} to b, . . , c, result in new col. a

Table 2: Operators of the relational algebra.

tion type t supported by the relational back-end such that
the value domain of t includes v (or may encode v). A node
n is represented by a surrogate value γn reflecting node iden-
tity and document order : we require γn1 = γn2 ⇔ n1 isn2

and γn1 < γn2 ⇔ n1 <<n2 for any two nodes n1,2. A va-
riety of such node surrogates have already been described,
e.g., preorder ranks [9] or ORDPATH labels [11]. In the
context of this paper, we may treat atomic values and node
surrogates alike (and will simply refer to items from now
on).

pos item
1 i1
.
.
.

.

.

.
n in

An XQuery item sequence (i1,. . . ,in) is encoded
by the table with schema pos|item depicted here.
Column pos maintains sequence order. The sin-
gleton sequence (i) and item i have identical
representations: a single-row table with schema
pos|item; the empty sequence () maps into the

empty table with the same schema.

2.1 Variables and Iteration
To render the following more vivid, let us discuss the com-

pilation of query Q1 as a running example:

s0

8

>>>>>><

>>>>>>:

for $x in

e1
z }| {

(100,200,300) return

s1

8

>><

>>:

for $y in

e2
z }| {

(30,20) return

s2

˘
if ($x eq $y * 10

|{z}

e3

) then $x else ()

(Q1)

(the si denote iteration scopes which we will introduce in a
moment). Q1 is ultimately compiled into the plan depicted
in Figure 1. The plan carries several annotations (in )
of intermediate result relations which we will use to illustrate
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1 1 30
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4©©̀

iter pos item
1 1 100
1 2 200
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2©©̀

iter pos item
1 1 10
2 1 10
3 1 10
4 1 10
5 1 10
6 1 10

6©©̀

iter pos item
4 1 200
5 1 300

8©

outer inner
1 1
1 2
2 3
2 4
3 5
3 6

Figure 1: Initial relational algebra plan for XQuery
query Q1. Annotations in © explained below.

our relational encoding of variables and iteration. A full and
formal account of the compilation technique may be found
in [7, 8].

Once the relational representation of an item sequence is
fixed, the encoding of a variable that gets bound to this
sequence by an XQuery for-clause may be derived rather
straightforwardly. In Q1, variable $x gets bound to each of
the items of sequence e1 (whose encoding forms leaf 1© of the
plan in Figure 1) in three independent iterations. We cap-
ture these semantics via table e$x with schema iter|pos|item

iter pos item
1 1 100
2 1 200
3 1 300

Table e$x.

as shown here: in the second iteration
(iter = 2), for example, $x is bound to the
single item 200. Note how the single-column
table loops1

= πiter(e$x) can encode the fact
that the outer for-clause results in three
evaluations of the associated loop body.

Loop lifting. The principal idea behind the compilation
scheme is that every XQuery subexpression occurs in the
scope of an iteration. The iterations in each such scope are
encoded by a single-column table with schema iter. For Q1,
the three scopes have been marked s0,1,2 and Figure 2 lists

loops0

iter
1

loops1

iter
1
2
3

loops2

iter
1
2
3
4
5
6

Figure 2: Itera-
tion scopes (Q1).

the corresponding loop tables. In
case an XQuery expression e oc-
curs in iteration scope si, we com-
pile e in dependence of relation
loopsi

to obtain its algebraic plan.
We refer to this technique as loop
lifting. In a nutshell, an item se-
quence (as well as a single item) is
loop-lifted by forming the Carte-
sian product of its relational rep-
resentation with the current loop

relation. Application of this rule leads to the relational
representation for sequence e1 at 2© in Figure 1: e1 has
been compiled in the outermost iteration scope s0 and thus
loop-lifted over loops0

= iter
1

. The three places where loop-



lifting occurs for the subexpressions e1,2,3 of Q1 have been
marked by ©̀ in Figure 1. From the loop-lifted e1 we derive
the representation e$x of $x at 3©. Next, the subexpres-
sions occurring in the body of the outermost for-clause are
to be compiled in iteration scope s1. The plan computes
loops1

= πiter(e$x) which is then used to loop-lift the rela-
tional representation of e2 to yield the intermediate result
at 4©: this relation encodes the item sequence (30,20) for
each of the three iterations performed by the outer for-
clause. The compilation scheme continues, computes the
representation of $y at 5© and emits algebraic code to de-
rive the relational encoding 6© of the atomic constant 10

in the innermost iteration scope s2 (via loop lifting, here:
loops2

× pos item
1 10

): in each of the six iterations of the body
of the inner for-clause, the constant assumes the value 10.

We really reap the benefits of this representation—which
collects the values of a subexpression as well as the bindings
of a variable for all iterations into single tables—when it
comes to the bulk evaluation of XQuery functions and oper-
ators like, e.g., * in Q1. At 7©, we assemble the arguments
$y and 10 to operator * in each iteration via an equi-join on
the iter values. The subsequent ³ operator then computes
the overall six multiplications necessary to evaluate Q1 in
bulk. A similar remark applies to =, further up in the plan
and to all operator and function applications in general.

The final result of the plan is 8©: the fourth iteration of
the innermost loop body contributes the single item 200,
the fifth iteration contributes item 300 to the query result
sequence (200,300).2

In a nutshell, loop lifting is the key technique to compile
explicit iteration—XQuery’s for-clause—into efficient bulk-
style applications of algebraic operators. We thus operate
the relational engine in the mode it supports best.

3. PLAN SIZE AND
DENORMALIZED ITEM SEQUENCES

It is a plus of this compilation scheme that it does not re-
strict the shape of the input query: expressions may nest
arbitrarily given that the syntactical and typing rules of
XQuery are obeyed. The emitted algebraic plans, how-
ever, may be large. Although a rather simple—and thus
efficient—variant of relational algebra (Section 4) suffices to
evaluate the plans, the significant number of operators may
clearly have an impact on performance.

Note that the plans include several occurrences of com-
mon sub-plans such that a lot may already be gained by
compiling into DAGs (instead of operator trees). The prin-
cipal size problem remains, though. To exemplify, XMark
query Q8 (involving XPath navigation, a value-based join,
aggregation, and element construction) compiles into a plan
DAG of 153 operators. The simple query Q2

for $x in (k,. . . ,2,1)

return $x * 5
(Q2)

initially yields the plan of Figure 4(a) and thus a total of
13 operators.

2A final simple back-mapping step (not shown in Figure 1 for
space reasons, but discussed in [8]) canonicalizes the values
in columns iter and pos.
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Figure 3: Denormal-
ized item sequences.

Denormalized item rep-
resentation. Loop lift-
ing effectively collects all
values an expression e as-
sumes during the eval-
uation of enclosing for-
clauses into a single table.
Should e be (a) constant
or (b) invariable with re-
spect to its enclosing iter-
ations, loop lifting conse-
quently leads to a fully de-
normalized representation
for e and thus to—at least
potentially—significant data redundancy: e’s representation
will be identical for all iterations (i.e., groups of identical iter

values).
Note the loop-lifted representation of the atomic item 5

in Q2 shown in Figure 3(a). Similarly, inside a loop of k

overall iterations, the constant or invariable item sequence
(i1,. . . ,in) has the encoding depicted in Figure 3(b). De-
pending on the values of k and n, this redundancy may,
again, severely impact plan performance.

XQuery’s orthogonality clearly is one of its virtues. We
thus designed the compiler to be completely compositional—
which is crucial and typical for a compiler of a functional-
style language: a subexpression is compiled independent of
its embedding expression. Plan size and data redundancy
seem to be prices we pay for this orthogonal treatment of,
e.g., items and item sequences.

4. PLAN ANALYSIS AND SIMPLIFICATION
In the sequel, we argue that the just mentioned issues need

not be showstoppers for loop-lifting-based XQuery compila-
tion. The concluding Section 6 briefly reviews performance
results which clearly indicate the same.

Despite their significant size, the generated plans come
with an effective optimization hook: the operators are par-
ticularly simple, restricted variants of the classical relational
algebra operators, e.g.,

• all 1-operators are equi-joins,
• the projection operator π does not remove duplicates,
• all invocations of

.
∪ receive disjoint argument relations.

These restrictions render the operators efficiently implement-
able inside a relational engine and—more importantly in this
context—enable rather straightforward plan analysis to in-
fer a variety of properties of intermediate plan results. We
then use the properties to spot those places in the plans
which are subject to simplification or even pruning. As we
will see, the simplifications can effectively cut down plan
size and help to remove inefficiencies due to denormaliza-
tion through loop-lifting.

Because the relational plans have been generated by an
XQuery compiler (as opposed to an SQL compiler) the sim-
plification process has a somewhat different “taste” than
regular algebraic optimization.

4.1 Plan Properties and Inference
Table 3 lists the properties we will use during plan analysis

and simplification. Properties icols and ocols (input/output
columns) are associated with operators, the remaining prop-
erties relate to intermediate plan results, i.e., relations.
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Figure 4: Plan simplification based on inferred properties of intermediate results and operators (query Q2).

Property Description

card0, card1 relation has cardinality 0 (or 1)
key: a(α) column a is key with value domain α
dense: a col. a is numbered densely starting from 1
∅¢ a(v) a is constant col. of value v
∅³ a

(α1)
1 , . . , a

(αn)
n remaining col.s are independent of a1, . . , an

icols: a1, . . , an col.s a1, . . , an are required to evaluate this
operator (or an ancestor operator)

ocols: a
(α1)
1 , . . , a

(αn)
n col.s a1, . . , an appear in operator output

Table 3: Properties of relations (and operators).

The two former properties are primarily used to detect
that operators consume or produce obsolete result columns—
a situation that is commonly created by preceding simplifi-
cation steps. An operator ω inherits property icols from its
parents in the plan DAG: if column a is required to evalu-
ate a parent and ω does not produce output column a itself,
then ω.icols will contain column a (and ω thus requires this
column to be contained in one of its arguments). If, for
example, ω = πa:b,c or ω = ³a:(b,c), ω.icols would contain
columns b, c instead (but not column a).

All other properties may be synthesized during a single
bottom-up walk of the DAG. An excerpt of the property
inference rules can be found in Figure 5. Property e.card0

(e.card1) holds if sub-plan e yields a relation of exactly zero
(one) tuple(s). From this we may infer further interesting
relation characteristics, e.g., the preservation of keys (see
below). The presence of such a key column a is recorded in
property key: a(α). A superscript (α) denotes a domain iden-
tifier : α represents the active domain of its column, i.e., all
values actually contained in column a. We obviously cannot
maintain the value domain itself due to its potential size,
but two columns a(α), b(α) with identical inferred domain
identifiers are guaranteed to share one active domain. A de-
vice similar to domain identifiers has also been used in [10].
In a relation e with property e.dense: a, the active domain

of column a is 1, 2, . . . , n where n is the cardinality of e.
The two remaining properties are probably the most im-

portant ones in our context. If e.∅¢ a(v), then all tuples in
e contain value v in column a. We denote this by a degen-
erate functional dependency (fd) with an empty left-hand
side [1,5,10] for uniformity reasons which will become clear
in a moment. The degenerate multivalued dependency (mvd)
e.∅³ a

(α1)
1, . . , a

(αn)
n indicates that the column group a1, . . , an

is independent of all remaining columns of e. For the rela-
tion in Figure 3(a), for example, we have ∅¢ item(5). For
the relation in Figure 3(b), we have ∅ ³ iter(α) where α

represents the domain 1, . . . , k.

In Figure 5, Rule (5) uses inferred functional dependencies
for constant folding with respect to the binary operator ◦,
while Rule (1) introduces such fds. Result column a will be
constant in both cases. Rule (2) propagates key column b

through a selection but introduces a fresh domain identifier
β for b: the selection potentially restricts active domain α;
we know, however, that β ⊆ α. This domain inclusion re-
lationship is recorded for later perusal. Finally, an mvd is
inferred by Rule (9). The Cartesian product guarantees the
column values in e1 and e2 to be independent or orthog-
onal [5]. (Obviously, a symmetric inference rule in which
e1,2 swap roles is also correct.) Note that such mvds are
preserved under certain preconditions (Rules (10)–(12)).

4.2 Peep-Hole Plan Simplification
The substantial size of the initially emitted plans make a

classical approach to query rewriting a rather hopeless case:
rewrite rules would need to be either (a) very specific, and
thus carry huge DAG contexts, or (b) very generic which
makes their applicability hard to detect. Instead, we use
a collection of peep-hole-style equivalences (Figure 6) whose
applicability may be decided by looking at the inferred prop-
erties of a single plan DAG node. Specific necessary proper-
ties thus appear in the premises of the algebraic equivalence
rules.
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Figure 5: Property inference (excerpt of rules). Domain identifiers α, β introduced in a rule’s consequence
denote fresh (previously unused) domain identifiers.

e.∅¢ b(v)

πa,..,b,..,c(e) ≡ πa,..,b:v,..,c(e)
(a)

e.∅¢ b(v)

¸a:(b,c)(e) ≡ ¸a:(v,c)(e)
(b)

e.∅¢ d(v)

%a:(b,..,c)/d(e) ≡ %a:(b,..,c)(e)
∧ %a:(b,..,d,..,c)/e(e) ≡ %a:(b,..,c)/e(e)

(c)

e.key: d(α)

%a:(b,..,d,..,c)/e(e) ≡ %a:(b,..,d)/e(e)
(d)
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e1.key: a(α) e2.∅³ b(α)

e1 1a=b e2 ≡ e1 × e2
(h)

Figure 6: Algebraic equivalences (excerpt) based on inferred properties.

Some simplifications strive to minimize the dependence of
an operator on specific input columns (in Rules (a) and (b),
a reference to constant column b is traded for the constant
value v). This removes column b from the icols property
which, in turn, may render a Cartesian product (Rule (f)) or
a join (Rule (g)) further down in the DAG obsolete. Another
group of equivalences tries to simplify or prune occurrences
of %: the semantics of % are simple but most conceivable
implementations require its input to be sorted. Rules (c)
and (d) describe how a constant or key column d may be
used to shorten the list of sort criteria. In Rule (d), column
d is a key for e and thus a decisive order criterion: further
columns need not be inspected to decide the order of two
rows. If a dense column b is the major sort criterion, we
might as well derive the row numbering from b itself; % is
pruned (Rule (e)). Rule (g) finally removes key joins in case
of a key domain inclusion: every row in e2 is guaranteed to
find exactly one join partner in e1. Note that we do not carry
out the actual domain inclusion test here but rather check
domain identifiers against the known inclusion relationships
recorded by inference Rule (2).

Figure 4 exemplifies how these rules interact to simplify
the initial plan for query Q2 in several steps. Those nodes

πiter:1,pos,item:res

³res:(item,5)

pos item
1 k.
.
.

.

.

.
k 1

Figure 7: Fully
simplified plan
for query Q2.

affected by the following simplifi-
cation step are annotated with the
properties which justify the simplifi-
cation (remember that we are using
peep-hole simplification: changes to
the DAG are always in the direct
vicinity of the affected nodes).

The bottom % node in Figure 4(a),
for example, is simplified according
to Rule (c): we have inferred that
all rows carry the atomic value 1 in
column item (∅¢ item(1)). Such a
column does not make for a useful order criterion and is

removed from the list of order criteria. The resulting, sim-
pler row number operator %inner:(pos) numbers the incoming
rows solely based on the dense column pos (Figure 4(d)).
In such a situation, Rule (e) indicates that the dense col-
umn already provides the requested row numbering for free.
This instance of % is thus replaced by a projection πinner:pos

which introduces column inner as a mere alias for column
pos. In Figure 7, which depicts the fully simplified plan for
query Q2, even this projection has been pruned away.

Similarly, note how the loop lifting for the atomic item
5 is detected (and then rendered obsolete) with the help of
property ∅¢ item(5) in the first two simplification steps in
Figure 4.

5. MVDs FOR XQUERY JOIN DETECTION
An fd ∅ ¢ a(v) can detect the presence of a loop-lifted

constant item in the plan DAGs. Likewise—and we feel that
this is a quite elegant outcome of this research—we may use
the more general mvd concept to detect the more general
case of a loop-lifted invariable item sequence. To see this,
note that the representation of the loop-lifted item sequence
(i1,. . . ,in) (Figure 3(b)) is derived from the relational se-
quence encoding (see Section 2) by forming the Cartesian
product with the current loop relation, i.e., with a single-
column relation with schema iter. But this precisely charac-
terizes [1,5] the presence of the degenerate mvd ∅³ iter(α)

(where α is determined by the number of iterations to be
performed) in the encoding of Figure 3(b). The property
inference Rule (9) in Figure 5 makes this correspondence
between loop-lifting and the presence of mvds available to
the simplifier.

This observation paves the way for a form of XQuery join
detection that is completely unaffected by XQuery’s syntac-
tic diversity. Figure 8(a) shows a prototypical plan in which
the (arbitrary) subexpression e2 has been lifted over the it-
eration scope opened by subexpression e1 (which itself is to
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Figure 9: Fully simplified plan for query Q1.

be evaluated inside an iteration encoded by relation loop).
Exactly if the source XQuery query describes a join be-

tween the two subexpressions e1,2—i.e., e2 may be evaluated
independently of e1 before the two resulting item sequences
are joined in some way—then we will be able to infer the
mvd ∅³ iter(α) (marked !© in Figure 8(a)) at the root of the
sub-plan for e2. We then simplify with the help of Rule (h)
in Figure 6 and emit the plan of Figure 8(b) instead. In the
simpler plan, note that e2 is not loop-lifted over e1 but over
loop. We may now expect (the larger the intermediate result
of e1 the more significant) less data redundancy in e2. More
importantly, however, the new plan is nicely prepared to
merge its root Cartesian product with a σ-operator to form
a join. This algebraic join then implements the join that
was present in the original XQuery query in some syntactic
form.

The initial plan (Figure 1) for query Q1 is an instance of
the prototypical plan of Figure 8(a). Note that the compiler
can detect the presence of the mvd ∅³ iter(α) at node !© in
Figure 1 while it emits the code. At this point in time, the
compiler holds references to the sub-plans for e1,2 and can
rather easily initiate the rewriting into the new DAG shape
of Figure 8(b). The newly introduced Cartesian product is
then merged with the two ancestor operators σ– =, to make
the implicit value-based join expressed by XQuery query Q1

explicit in the algebraic plan. Note that, depending on the
XQuery comparison operator used in the source query, this
join operator will be a θ-join (not an equi-join). In [3], we
discuss how the existential semantics of XQuery’s general
comparison operators (=, <, . . . ) may be compiled into ef-
ficient algebraic code. Figure 9 shows the fully simplified

plan for query Q1.
This variant of XQuery join detection is not affected by

the shape of the source query. We will, in particular, infer
the mvd ∅³ iter(α) at !© in Figure 8(a) independent of how
many iteration scopes, i.e., nested for-clauses, separate e1

and e2.

6. PURELY RELATIONAL XQUERY
The XQuery compiler studied in this paper, dubbed Path-

finder, is part of the purely relational XQuery processor
MonetDB/XQuery [3]. The back-end of this processor is
MonetDB [4], an extensible open-source relational database
kernel developed at CWI, Amsterdam. MonetDB’s inter-
nals have been optimized for in-memory operation but the
system is engineered to exploit the memory and file man-
agement services of the operating system to operate with
data volumes that exceed main memory capacity. In par-
ticular, MonetDB efficiently supports narrow tables (three
columns or less) which are pervasive in the plans emitted by
our XQuery compiler.

Q 110 MB 1.1 GB

1 0.41 1.2
2 0.30 2.4
3 1.51 12.5
4 0.45 3.8
5 0.16 1.2
6 0.05 0.3
7 0.07 0.4
8 0.75 10.4
9 0.87 12.9

10 5.31 55.0
11 3.48 960.9
12 1.66 431.3
13 0.22 1.3
14 2.20 21.3
15 0.28 1.7
16 0.26 1.8
17 0.30 2.8
18 0.13 0.9
19 0.55 5.3
20 0.62 4.9

Table 4: XMark
query evaluation
time (seconds).

To give an impression of where re-
search into relational XQuery proces-
sors may lead, we reproduce a fragment
of the XMark experiments reported in
[3] in Table 4 (conducted on a 64-bit
system with an 1.6 GHz AMD processor
and 8 GB RAM). Pathfinder, faithfully
operating MonetDB in the strict se-
quential access mode it was engineered
for, indeed inherits the scalability of its
back-end: XMark document instances
beyond 1 GB serialized size are pro-
cessed in interactive time, including the
XQuery join queries Q8–Q10 (note that
queries Q11, Q12 produce intermediate
results quadratic in the size of the in-
put document—any XQuery processor
will thus struggle at this point).

Pathfinder and the MonetDB/XQuery
system will be released into the open-
source well before XIME-P 2005 (www.
pathfinder-xquery.org).
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