
Trading Precision for Throughput in XPath Processing

Engie Bashir
Department of Computer Science

American University of Beirut
Bliss Hall, P.O.Box 11-0236

Beirut, Lebanon

engie.bashir@aub.edu.lb

Jihad Boulos
Department of Computer Science

American University of Beirut
Bliss Hall, P.O.Box 11-0236

Beirut, Lebanon

jihad.boulos@aub.edu.lb

ABSTRACT
We present in this paper a system for rewriting user-specific
XPath queries for higher sharing of common sub-expressions
in a streaming environment. We rewrite these queries ac-
cording to an extracted schema from a pre-processed stream
and we apply the rewritten queries to a subsequent stream.
We show that this rewriting yields a much higher through-
put while keeping an error rate under control.

Keywords
XML, XQuery Processing, Precision, Throughput.

1. INTRODUCTION
Xamarkand [1] is a research prototype for XQuery process-
ing; it incorporates a query rewriter for higher sharing among
multiple subscribed queries, a query compiler, an optimizer,
and a native XML storage manager. It also incorporates a
query rewriting component that trades performance for pre-
cision where the query rewriting is accomplished according
to a provided XML schema or an extracted schema from
streaming documents. We present in this paper this query
rewriting component where we concentrate on XPath since
it is the foundation based on which XQuery is built. We
are also more interested here with streaming documents in
Publish/Subscribe environments since for stored documents
a precise schema can be extracted without any difficulty and
query rewriting presents no challenge.

Publish/Subscribe systems suffer from scalability issues. Dif-
ferent optimization approaches have been considered to re-
solve these issues and they have been proved quite successful.
Most approaches have exploited commonalties in the prefix
of XPath queries, and some others focused on query index-
ing. However, most Publish/Subscribe systems face perfor-
mance and memory problems when handling a large number
of queries over a fast stream of XML documents, especially
if these queries include unspecified contents or structures
(i.e., “∗” and “//” in the XPath queries) to be matched on

recursively defined elements. This imprecision in queries is
mostly coming from the subscriber’s lack of knowledge of
the documents structure to be matched against and hence
the non-existence of schemas for the streaming XML docu-
ments.

These trends have led us to exploit the possible existence
of an implicit schema for streaming documents in order
to rewrite some XPath queries. The rewriting mechanism
would minimize the number of wildcards and/or ancestor-
descendant relationships found in XPath queries. Therefore,
we think our approach makes it possible for some unneces-
sary computations to be avoided.

As a concrete example, imagine an XML schema where
among other things, the three elements “<a>”, “<b>”,
and “< c >” are defined in a way such that “< a >” is a
parent of “<b>” which is a parent of “<c>”. Moreover,
imagine the following three XPath queries:

• Q1: /a//b/c/...

• Q2: //a/∗/c/...

• Q3: /a/b/c/...

Q1 checks whether every streaming element nested within
“<a> · · · </a>” is “<b>”. However, the schema indicates
that “<b>” is a direct child of “<a>”; hence, there is no
need for the descendant checking. As for Q2, all children
of “<a>” are possible parents of “<c>”, while the schema
indicates that “<b>” is the actual candidate. Thus both
queries have a simple prefix structure “a/b/c/...” as Q3. A
rewriting of some of these queries certainly provides an ad-
vantageous optimization in query processing. Moreover, a
matching system that groups queries based on commonali-
ties in their prefixes would be able to group these queries and
many other variants of them into the same processing com-
ponent. Based on these insights, we develop our approach
and present an analysis of its benefits and drawbacks.

Our system is based on extracting an implicit schema from
a stream of XML documents and use it to rewrite some of
the subscribed queries. If a schema exists for the stream-
ing XML documents, XPath query rewriting is straightfor-
ward and simple. If on the other hand no schema exists, a
schema can be extracted from a sufficiently large number of
streamed XML documents. The idea behind extracting a



schema is to capture the structure of the streaming XML
documents and track the arrival frequency of each XML
element. We derive the schema by building an XML file
in which attributes convey statistical data on elements fre-
quency arrivals. These statistical values and the deduced
relationships among elements contribute in the rewriting
process of XPath expressions. We present the advantages of
our approach by comparing the performance of the rewritten
queries versus the original one.

Unfortunately, rewriting some XPath expressions accord-
ing to an extracted XML schema of past-processed XML
documents might introduce a certain error rate in missing
some matches on subsequent streaming documents. This
problem is the result of the non-existence of elements in
past processed documents, and hence building non-perfect
schemas. Hence, some rewritten queries might not match
parts of some newly streaming documents. In our context,
we rewrite a query only if the subscriber specifies that an
error rate can be tolerated and what is that tolerance rate.

The rewriting mechanism is perceived as matching an XML
schema against each XPath expression. After rewriting some
queries by replacing some of the wildcards by their respec-
tive potential real element names, and some of the ances-
tor/descendent relationships by direct parent/child relation-
ships or their respective paths from the built schema, we
process the matching of the rewritten set of queries against
the streaming XML data using an Extended Push-Down
Automaton (E-PDA) [10]. We show that this filtering in-
frastructure is able to handle a much larger number of sub-
scriptions and a higher number of documents per unit time
without greatly affecting the precision of the matching process.

In the rest of this paper, we present in Section 2 a for-
malization of our problem. Section 3 presents our solution
and some analysis; in Section 4 we show some performance
and precision results of applying our proposed solution. We
state some related works in Section 5 and conclude with
some ideas for future works in Section 6.

2. PRELIMINARIES
We consider a subset of XPath expressions that contains el-
ement names, wildcards (“∗”), children (“/”) and ancestor-
descendant relationships (“//”), and branches or predicates
(“[. . .]”). However, non-predicate expressions are the ones
considered in our query rewriting mechanism. Although our
implementation can handle a larger grammar, the following
grammar is the portion that mostly incorporates our target
rewriting part of XPath.

E → E/E | E//E | E[E] | label | ∗ (1)

The problem this paper is concerned with is the processing
optimization of XPath queries in XML filtering systems. We
consider that in some environments, users are ready to sac-
rifice some precision for higher throughput and shorter re-
sponse times. To achieve this goal we introduce the notion of
query rewriting according to a derived schema. Hence, our
optimization scheme is divided into three phases: schema ex-
traction from a stream of XML documents, query rewriting
of a set of XPath expressions, and streaming XML document
matching against these rewritten XPath expressions.

2.1 XML Schema Extraction
The primary goal of this part is to derive a statistical XML
schema from a collection of streaming XML documents. We
build this schema in a way such that it is itself an XML
document that preserves relationships, hierarchy, and most
importantly the frequency of arrival of XML elements. This
arrivals frequency is what makes the error rate in rewritten
queries controllable. We can conceptualize this part as a
learning phase in our solution approach.

Definition 1. Given a set of XML documentsD = {D1,D2,
. . . ,Dn}, compute the XML schema S such that ∀ <e> . . . <
/e> in S with frequency f, ∃ <e> . . . </e > in f documents
in D such that children(e,D) ⊆ children(e,S).

2.2 XPath Rewriting
The most visible component in our approach is to rewrite
XPath expressions by minimizing the occurrences of wild-
cards and ancestor-descendant relationships. Thus, we fo-
cus on replacing location steps li that are of the forms “/∗”
and “//a”. These replacements take place according to a de-
rived schema and a user-provided error tolerance rate. Each
replacement may introduce an error rate E(li).

Definition 2. Given an XPath expression P=l1 . . . lf , a
tolerated error rate η, and a derived XML Schema S, find
the set (including a singleton) of XPath expressions {P1,P2,

. . . , Pn} equivalent to P such that
Pf

i=1 E(li)≤ η.

Example: Given an XPath expression P = /a//b[//f ]/∗/d
and an XML Schema S where <b> is a direct child of <a>
and <c> is the child of <b> having <d> as its direct
child, the equivalent XPath expression P1 = /a/b[//f ]/c/d
is generated.

2.2.1 Wildcard Rewriting
The wildcard location step (“/∗”) may possess a relatively
high processing cost compared to a normal element loca-
tion step. If we know from the extracted schema what are
the elements for this wildcard, we can replace it with those
elements.

Example: In Q2 above, the “/∗” transition is triggered
on the arrival of each child of < a > and there might be
several of them. However, the query should match on a
single element, implying that the computations incurred are
useless. Thus, replacing the ”/∗” by ”/b” would certainly
alleviate the processing cost of such a match.

2.2.2 Ancestor-Descendant Rewriting
The ancestor-descendant relationship can be rather expen-
sive to evaluate since it requires accessing all descendants of
a context node.

Our solution approach is based on reducing the number
of occurrences of ancestor-descendant relationships (“//”)
whenever possible in some XPath expressions. That is to
say, the “/a//b/c” in Q1 above might change to “/a/b/c”
according to the extracted XML schema and the tolerated
error rate. This gain in performance takes place at the even-
tual expense of loosing some precision in the results.



XML Stream

XML Stream XSExtractor
Tree Schema

Extended Tree Schema
1

XPath Queries Query Rewriting
New Set of XPath

Queries

2

NFA Builder

3

Queries Matched

Rewritten Queries 
MatchedStack Matcher

XML File Schema

Figure 1: System Architecture.

2.3 Efficient Filtering of XML Documents
Definition 3. Given a set of XPath expressions P={P1,P2,

. . . ,Pm} and a stream of XML documents D={D1,D2, . . . ,
Dn}. Compute for each document Di ∈ D, the set of XPath
expressions that match Di.

This problem has been addressed by several researchers [2,
5, 8, 9, 11]. It matches a set of XML documents against a
set of XPath queries. We do not explain here how this is
performed in our system because of space and since this is
a known processing mechanism.

3. QUERY REWRITING
We introduce here our approach to rewrite a set of XPath
expressions in a streaming environment. We start by provid-
ing an overview of our system’s architecture; we then give
a detailed description of the two major components of our
system: the XML Schema Extraction (XSExtract) and the
XPath Rewriter. A brief description of the query matcher
is also provided.

3.1 System Architecture
Our system is divided into three major components that
cooperate to produce a higher throughput while keeping a
target error rate under control. The first component is called
once for a set of streaming XML documents; it extracts an
approximate schema for this set of documents with some
other statistics. The second component is called to rewrite
the queries in a set of XPath queries; this process is done
according to the schema extracted in the first phase. The
third component builds a Extended Push Down Automaton
(E-PDA) for the rewritten set of queries. These three com-
ponents constitute the compile-time part of our system; the
run-time part—called the Stack Matcher—is executed once
for every newly streaming XML document.

A short explanation here of the Query Rewriter may give a
better understanding of how the Schema Extractor should
be designed. The Query Rewriter rewrites a set of XPath
queries, where each query is provided with the user’s require-
ment of the result’s accuracy, into another set where some
navigation forms have been replaced by simpler ones. It con-
sumes the set of original XPath queries along the Extended

Tree Schema—that is derived from the built schema—to
produce a new set of XPath queries. The new set of XPath
queries are less complex than the original ones since some of
the parent-descendant (“//”) and the wildcard steps (“/∗”)
are replaced by simpler navigational ones.

The architecture and functionalities of these components are
discussed in more details in the following sections. A general
overview of these components is given in Figure 2.

3.2 XSExtractor
XSExtractor takes charge of extracting a schema from a set
of streaming XML documents. The derived schema reflects
the hierarchy and frequency of arrivals of each XML element;
it also preserves relationships among these elements. This
schema has three models of representation: a Tree Model
(TM), an XML File Model (XML-FM), and an Extended
Tree Model (ETM). These models are semantically equiv-
alent, but have different structures that facilitate different
goals.

3.2.1 Tree Model
The TM is a schema model intended to summarize the struc-
ture and content of streaming XML documents. It also
tracks the frequency of arrivals of each XML element.

Definition 4. The TM is a tree T (V, E) where each node
vi ∈ V corresponds to an XML element and edge(vi, vj) ∈ E
represents the parent-child relationship between vi and vj .
Every node vj ∈ V has the following attributes:

• element(vj): the XML element name. In the following
we use vj and element(vj) interchangeably.

• count(vj): the frequency of arrival of the element.

• level(vj): the depth of an element where level(vj) =
level(vi) + 1.

TM extraction is driven by the events of the SAX handler
on a set of XML Streams (Algorithm 1 in Appendix A).

3.2.2 XML File Model
The XML-FM is another schema model for XML documents.
To build an XML-FM, a TM is in fact itself transformed into
an XML document to represent the extracted schema. The
XML-FM is derived from the TM according to the following
mapping. Let vi = Root(T ), then:

• transform element (vi) to its corresponding “start” and
“end” elements as denoted by <vi> . . . </vi>,

• transform count(vi) to an attribute count = count(vi)
to be added to the start element,

• repeat the above steps for the set of direct children
C = {vj ∈ V | ∃ edge(vi, vj) ∈ E} and recursively nest
the results accordingly.



3.2.3 Extended Tree Model
This model is derived from the XML-FM and is intended
to be consumed by the query rewriter. It is an extended
representation of the TM where every node in the tree holds
additional information about its descendants. Some of this
information is available only for descendants whose relative
levels to the context node are within a specific range and
whose upper bound is a system constant. Specifically, let
m = max be a constant that determines which ancestor-
descendant relationships are subject for rewriting.

Definition 5. ETM is a tree T ′(V ′, E′) where each node
v′i ∈ V ′ corresponds to an XML element and edge(v′i, v

′
j) ∈

E′ represents the parent-child relationship between v′i and
v′j in the XML schema file. Every node v′j ∈ V ′ has the
following attributes:

• element(v′j): the XML element name. Again, we use
in the following v′j and element(v′j) interchangeably.

• count(v′j): the frequency of that element arrival.

• level(v′j): the depth of element v′j where level(v′j) =
level(v′i) + 1.

• descendants(v′j): the set of descendants Dj = {dj1 , dj2 ,
. . . , djn} of v′j such that (∀ djh ∈ Dj , 1 ≤ h ≤ n ⇔
∃ v′k ∈ V ′ | element(v′k) = djh) and the following two
frequencies are collected:

– count(djh , l): the arrivals frequency of descen-
dant djh at relative levels l = level(v′k)−level(v′j)
where 1 ≤ l ≤ max.

– count(djh): the arrivals frequency of descendant
djh at all levels where level(v′k) > level(v′j).

Given that above attributes, we define the following terms:

• let Pv′
k

,l = Pr(v′k | v′j , l) denote the probability of an

XML element v′k at level l given that it is a descendant
of element v′j where l ≤ m, (m = max).

• let Pv′
k

= Pr(v′k | v′j) denote the probability of v′k at

all levels given that it is a descendant of v′j , i.e., Pv′
k

=

Σm
l=1Pr(v′k | v′j , l).

ETM extraction is driven by the events of the SAX handler
on the XML-FM schema file model. The algorithm of ETM
extraction in not provided here due to space limitation.

3.3 Query Rewriter
This component, as its name indicates, takes a set of XPath
expressions P = {P1,P2, . . . ,Pn}, each accompanied with a
tolerated error rate ηi, and rewrites them in simpler forms
without violating ηi for each Pi. The rewriting is accom-
plished through matching each query separately against an
ETM schema and according to a set of rules.

The system translates each XPath expression into a Non-
Deterministic Push Down Automaton (PDA). This PDA
definition is modified to adapt it to XPath queries and the
ETM schema. The resulting mechanism is called an ExPush
machine.

3.3.1 Rewriting Rules
The idea behind rewriting is to optimize the processing of
these XPath queries by minimizing the occurrences of ancestor-
descendant (“//”) and wildcard (“∗”) steps, knowing that
both types of steps are key factors in XPath evaluation com-
plexity. Hence, the following set of rules for rewriting are
introduced.

• whenever possible, replace a parent-descendant rela-
tionship in an XPath expression Pi (e.g., “a//b”) by
a set of wildcard location steps (e.g., “a/∗/. . ./∗/b”)
for each <b> found to be a descendant of <a> in the
derived schema and such that level(b)− level(a) ≤ m
and Σm

i=11− Pr(b | a, i) ≤ ηi.

• whenever possible, replace a wildcard step (“/∗”) with
a location steps (e.g., “/a”) where <a> is found to be
the proper replacement of “∗” in the derived schema.

3.3.2 ExPush Machine
The ExPush machine is a modified PDA. The purpose of an
ExPush machine is to rewrite an XPath expression, Pi =
l0l1 · · · ln where each location step lj = /ej | //ej , while it is
being matched against an ETM schema. When it exhausts
the input of the schema, the ExPush machine returns a set of
equivalent XPath expressions Pi = {ep1, ep2, ..., epk}. The
main change from a normal PDA is that it has multiple,
extended, and linked stacks to operate on instead of just
one. These chained stacks (ExStacks), each with its exten-
sions (i.e., additional parameters), hold information on the
rewritten queries. The second change is that the ExPush
Machine accepts as input the nodes of the ETM. The ETM
is traversed in a Depth First Traversal manner to reflect its
XML schema view.

Since the ExPush machine has a PDA with a chain of ex-
tended stacks, we simplify its definition to combine the def-
initions of a PDA machine and an ExStacks machine.

3.3.3 PDA Machine
This machine models an XPath query Pj as a linear (i.e.,
non-branching) Finite State Machine (NFA). Unlike the NFA
represented by other systems [2], our NFA hides some states
and transitions related to the branching paths. The reason
behind this elimination is that our system does not con-
sider rewriting for branched paths. These XPath branches
are stored within their parent’s state for later expansion.
Hence, each state in our system can have at most two out-
going transitions. An additional stack is joined to this NFA
in order to keep track of which steps have been rewritten.

3.3.4 ExStacks Machine
The ExStacks Machine consists of a set of chained and ex-
tended stacks where each chain holds an XPath expression
that could belong to the set of rewritten queries. All these
chains are established while matching the ETM against the
PDA. A chain construction is based on a division/split ap-
proach that is due to the occurrence of the consecutive states
{qj , qj+1, qj+2} ∈ Q | δ(qj , ε) = qj+1, δ(qj+1, ej) = qj+2 in
the PDA or equivalently to the occurrence of ej−1//ej in
the XPath expression. It is also related to the distribution
of the ej ∈ descendants(v′i) where v′i = ej−1 | v′i ∈ V ′.



Thus, when these criteria are met a division/split occurs
whenever a node v′k = ej | v′k ∈ V ′ in the ETM is reached.
Accordingly, a new extended stack is added to the chain.

Definition 6. An ExStacks Machine is an 8−tuple M =
(S, K, Γ, ∆push, ∆pop, ∆traverse, ∆top, s0) where

• s0: initial stack.

• S: a set of extended stacks {s0, s1, . . . , sm}; initially
S = {s0}.

• K: a set of states Q ∪ {qdummy}.

• Γ: a set of XML elements v′i | v′i ∈ V ′.

• ∆push: the transition relation representing a valid and
finite subset of ((S × Γ×K), (S ×K)).

• ∆pop: another transition relation representing a valid
and finite subset of ((S × Γ×K), (S ×K)).

• ∆traverse: a function S → {K, K, . . . , K}.

• ∆top: a function S → K.

Intuitively, if ((s, a, q), (s′, q′)) ∈ ∆push, then whenever M
encounters on its top-down traversal v′ = a from the ETM
schema and stack s is in state q, it pushes q′ onto s′ where
∆(q, a) = q′ or q′.name = dummy. Similarly, if ((s, a, q),
(s, q′)) ∈ ∆pop, then whenever M encounters on its bottom-
up traversal v′ = a and stack s is in state q, it pops q from
s and leaves it with state q′. An s → {qi, qi+1, . . . , qh} ∈
∆traverse is a function that returns the set of states in stack
s such that qj .name /∈ {ε, dummy}.

An ExStack is an ordinary stack s ∈ S with the following
additional items:

• splitTag(s): the XML element ej that may cause a
split from stack s. chain.

• prevStack(s): the stack s′ that caused the addition of
s when a split on s′ occurred.

• level(s): a value indicating the relative level of the
descendant from its ancestor in stack s′ when it split.

• count(s): a value that indicates the depth of the top
of the stack state from the ancestor state qj .

• levelsOfSplit(s): the levels on which the descendant
ej can split. It is derived from the ETM.

Due to space limitations, the Rewriting Algorithm is not
shown in this paper but is included in a larger report.

Nasa Random
Number of documents for XSExtract 15 75
Number of documents for processing 120 300
Average size of the document(KB) 7.85 0.35

Maximum number of Levels 6 7
Number of elements 58 27

Table 1: Data Sets.

3.3.5 Error Analysis
We provide in this sub-section a short analysis of the er-
ror rate that might be introduced with our approach of
query rewriting. Given an XPath expression Pi = l1l2 . . . lf ,
a tolerated error rate ηi, and a derived ETM schema (S)
with nesting degree N , each lj = /ej | //ej is associated
with hj = N − level(ej−1). Rewriting Pi might introduce
a loss of precision Ei whose upper bound is ηi. This im-
precision is added to α—an expectation value that is esti-
mated at schema extraction time and indicating the max-
imum error rate of an XML schema with respect to sub-
sequently streaming documents. The accuracy of α de-
pends heavily of the number of streaming documents based
on which the extracted schema was built. Ei is defined as
Ei =

Pf
j=1 E(lj) + α

where E(lj)=

8<
:

Phj

l=m+1 Pr(ei | ei−1, l), if lj = //ej

and 1− E(lj) ≤ ηi

0, otherwise.

In case E(lj) 6= 0, the tolerated error rate ηi is updated to
ηi = ηi − E(lj) while making sure that ηi ≥ 0.

4. EXPERIMENTAL RESULTS
We describe in this Section some of the experimental results
that we got from implementing and experimenting with our
proposed system. We run two sets of streaming XML doc-
uments on it. XPath queries were generated by a custom-
build query generator where we could control different pa-
rameters setting.

These experiments have been carried out on two data-sets:
NASA and Random. NASA is a well-know public domain
XML data set, and Random is a synthetic XML data that
we generated using another custom-build data generator
that helped us control different characteristics of the data.
For each data-set, we used three corresponding workloads
of 5000 queries. Table 1 shows the initial settings of the
experiments that we are reporting here.

Figures 3 and 4 show the gain in performance when rewriting
is allowed (WR) versus no rewriting (WNR). η is the toler-
ated error rate. We can see in Figure 3 that for 1k queries,
rewriting with 0 error rate allowed has quite a significant
advantage over no rewriting. In Figure 4 (with a logarith-
mic scale,) things are even more expressed, since without
rewriting, the system run out of memory beyond 3k queries.

We got almost the same trends with the Random data set;
the only difference was that when we stressed the distribu-
tion of elements in the generated data sets, the schema was
not perfect, and this resulted in missed matches as is shown
in Figure 6.



0

50

100

150

200

250

300

350

400

450

500

0.2 0.4 0.6

Descendant Probabilities

T
im

e 
(s

ec
.)

WR: η=0.4
WR: η=0.2
WR: η=0
WNR

Figure 2: Performance of Rewriting (RW) versus no
Rewriting (WNR) on 120 NASA documents for 1k
Queries.

1

10

100

1000

1000 2000 3000 4000 5000
Number of Queries

T
im

e 
(s

ec
.)

WR: η=0.4
WR: η=0.2
WR: n=0
WNR

Figure 3: Performance of Rewriting (RW) versus no
Rewriting (WNR) on 120 NASA documents while
varying the number of XPath Queries.

5. RELATED WORKS
Several papers mentioned query rewriting in XPath and
XQuery but, to the best of our knowledge, no paper reported
an implementation and an analysis of this issue. Most works
that we are aware of dealt with multiple query processing [6,
2, 5, 8, 9, 11], and schema extraction [7, 4, 3]. We used some
of the ideas reported in these works, but we mostly devel-
oped our own ideas in the rewriting parts.

6. CONCLUSION
We presented in this paper our approach for query rewrit-
ing in a streaming environment where the rewriting in done
based on an extracted schema. We provided an overview of
this rewriting, some analysis on the error rate it introduces,
and the results of some experiments we made. We intend in
the next phase to extend this approach to XQuery directly
in order to study the impact of query rewriting in XQuery
on the error rate.

7. REFERENCES
[1] http://www.cs.aub.edu.lb/boulos/xamarkand.

[2] M. Altinel and M. Franklin. Efficient filtering of xml
documents for selective dissemination of information.
Proceedings 26th International Conference on Very

0

10

20

30

40

50

60

0.2 0.4 0.6

Descendant Probabilities

T
im

e 
(s

ec
.)

WR max=4
WR max=3
WR max=2
WNR

Figure 4: Performance of Rewriting (RW) versus no
Rewriting (WNR) on 300 Random documents for 1k
Queries.

0

5

10

15

20

25

30

0.2 0.4 0.6

Descendant Probabilities

M
ax

. N
um

be
r 

of
 N

on
-M

at
ch

ed
 Q

ue
ri

es

max=0
max=4
max=3
max=2

Figure 5: The Average number of missed documents
for 5k queries on the Random data set.

Large Databases(VLDB), 2000.

[3] A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. Proceedings 2003 ACM
SIGMOD International Conference on Management of
Data, 2003.

[4] B. Chidlovski. Schema extraction from xml
collections. Proceedings 2002 ACM JCDL, 2002.

[5] F. M. Diao, Y. and P. Fisher. Yfilter: Efficient and
scalable filtering of xml documents. Proceedings 18th
International Conference on Data Engineering(ICDE),
2002.

[6] P. Eugester. The many faces of publish/subscribe
environments. ACM Computing Surveys, 2003.

[7] M. Garofalakis. Xtract: A system for extracting
document type descriptors from xml documents.
Proceedings 2000 ACM SIGMOD International
Conference on Management of Data, 2000.

[8] T. Green. Processing xml streams with deterministic
finite automata. Proceedings 9th International
Conference on Database Theory(ICDT), 2003.

[9] A. Gupta and D. Suciu. Stream processing of xpath
queries with predicates. Proceedings 2003 ACM



SIGMOD International Conference on Management of
Data, June 2003.

[10] R. Harb. Evaluating xqueries over xml streaming data.
Master’s thesis, American University of Beirut, 2004.

[11] F. Peng and S. Chawathe. Xpath queries streaming
data. Proceedings 2003 ACM SIGMOD International
Conference on Management of Data, 2003.

APPENDIX
Appendix A

Algorithm 1 Construct-TM(T, S)

. Constructs Tree Model Schema T (V, E) using Stack S
1: procedure createNode(label, count, depth)
2: i← |V |+ 1
3: V ← V ∪ ui

4: element(ui)← label
5: count(ui)← 1
6: level(ui)← depth
7: traversed(ui)← true
8: return (ui)
9: end procedure

10: procedure updateChild(ui, child, depth)
11: if ∃ edge(ui, uj) ∈ E and element(uj) = child

then
12: if traversed(uj) = false then
13: count(uj)← count(uj) + 1
14: end if
15: else
16: uj ← createNode(child, depth)
17: E ← E ∪ edge(ui, uj)
18: end if
19: return (uj)
20: end procedure

21: procedure startElement(a, attrs, d)
22: if isNull(T ) then
23: ui ← createNode(a, d)
24: else if S.size = 0 then
25: ui ← root(T )
26: count(ui)← count(ui) + 1
27: traversed(ui)← true
28: else
29: ui ← updateChild(S.top(), a, d)
30: end if
31: S.push(ui)
32: end procedure

33: procedure endElement(a, d)
34: S.pop()
35: if S.size = 0 then
36: for all ui ∈ V do
37: traversed(ui)← true
38: end for
39: end if
40: end procedure


