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1. INTRODUCTION
A key factor for the outstanding success of database manage-

ment systems is physical data independence: queries, and appli-
cation programs, are able to refer to the data at the logical level,
ignoring the details on how the data is physically stored and ac-
cessed by the system. The corner stone of implementing physical
data independence is an access path selection algorithm: whenever
a disk-resident data item can be accessed in several ways, the ac-
cess path selection algorithm, which is part of the query optimizer,
will identify the possible alternatives, and choose the one likely to
provide the best performance for a given query [22].

In the field of XML database management systems (XDBMSs,
in short), physical data independence remains yet to be achieved.
Many XML storage, labeling, and indexing methods have been pro-
posed so far. However, the data layout produced by a given storage
scheme is typically hard-coded within the query optimizer of the
corresponding system. This situation reduces the XDBMS’s flexi-
bility, by locking it within one storage model, while different appli-
cations may have different needs. It also raises performance issues.
Various workloads and data sets may need adding, e.g., an index or
a materialized view; the optimizer should automatically understand
how the new persistent structure could be used to answer queries.

We introduce XML Access Modules (XAMs), a step towards phys-
ical data independence in XDBMSs. A XAM describes, in an
algebraic-style formalism, the information contained in a persistent
XML storage structure, which may be a storage module, an index,
or a materialized view. The set of XAMs describing the storage is
used by the optimizer to build data access plans. Using XAMs, a
change to the storage (adding or removing a storage structure) is
communicated to the optimizer simply by updating the XAM set.

One of the most useful XAM features is the ability to model
indexes whose “keys” and “values” may be complex combinations
of XML structure and values. In this respect, XAMs can be seen
as a generalization relational binding patterns to XML. Relations
with binding patterns have been show useful for relational query
optimization [21, 11], and these benefits carry over to XAMs.

In the following, Section 2 introduces XAMs, and Section 3
presents its algebraic foundations, with a focus on index support.
We briefly discuss related works and perspectives in Section 4.
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2. XML ACCESS MODULES
XAMs are a formalism for representing an XML storage, index

or materialized view. This formalism must be general enough to
capture many existing (and future !) proposed structure. It must
have clearly defined semantics, to allow the optimizer to make in-
formed decisions. Finally, it should be relatively easy to understand
and to express.

Enumerating existing XML storage schemes is clearly out of the
scope of this work; a classification attempt can be found in [14].
We list here some interesting dimensions of such schemes. The de-
gree of fragmentation may go from very low (blob storage) to very
high (node-oriented storage). The clustering criteria may be very
simple, e.g., cluster nodes by their name [10], or very complex,
e.g., cluster nodes connected by a complex path expression [13,
18]. The clustering criteria may be derived from the document’s
schema, content, a workload, or a combination thereof. Most XML
storage structures rely on a node labeling scheme which provides
persistent identifiers to XML nodes. Such IDs may have interesting
properties: they may reflect document order, may allow establish-
ing structural relationships, or may furthermore allow deriving the
ID of a node from the ID of e.g., its children. Knowledge about ID
properties is crucial for the optimizer in order to exploit them.

Particular applications may not need to use all the above spec-
trum of choices. However, just like relational database systems,
XDBMSs should be able to support different XML data sets and
query workloads. Thus, XAMs should capture the above aspects.
We describe them next.

An XML Access Module (XAM) describes a fragment of an XML
document stored in a persistent data structure. Formally, a XAM is
an ordered tree

���������	�
����
, where:

���
is a node specification,�	�

is an edge specification, and
�

is an order flag. If the XAM data
is stored in document order,

�
is set to true; otherwise,

�
is false.

We now describe XAM specifications, using a grammar-like no-
tation (Figure 1). We use bold font for terminal symbols of the
grammar, i.e. constants.

Any XAM specification contains a special node � , correspond-
ing to the document root (the ancestor of all elements and attributes
in a document). The other nodes represent elements or attributes,
and have an associated ������� ; by convention, names starting with�

are used for XAM nodes representing XML attributes.
A node may be annotated with: an identifier specification ��� ��� ��� ,

a tag specification � ��� ��� , a value specification � ��� ��� , and a con-
tent specification  ��� ��� .1 By content, we mean the full (serial-
ized) representation of the XML element or attribute.2 An ID (resp.

1Attribute nodes are uniquely identified by their parent’s ID and
the attribute name. We use explicit IDs for simplicity.
2Clearly, the content of an XML element can always be retrieved
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(1)����� � ������� ��� � � � � � � ��� ��� � � � � � � �  ��� ��� � (2)

��� ��� ��� ��� � IDi 	 o 	 s 	 p (R?) (3)

� ��� ��� ��� � �
Tag

�
R
�   	 [Tag= � ] (4)

� � � � � ��� � �
Val

�
R
�   	 [Val=� ] (5)

 ��� ��� ��� � Cont (6)� �
��� � ���
(7)���� � � ��� ��� � / 	 //  � o 	 j 	 s 	 nj 	 no

 � ��� ��� (8)

Figure 1: XAM grammar.

tag, value, content) specification, attached to a XAM node, denotes
the fact that the element/attribute ID (respectively, tag, value, or
full textual content) is stored in the XAM.

Node identity is a crucial notion in XQuery processing. Any
XML store provides some persistent identifiers; the particular type
of IDs used determines the efficiency of matching structural query
conditions. The persistent identifiers stored in a XAM are described
by the ID specification (line 3); it consists of the symbol ID, and one
of four symbols, depending on the level of information reflected by
the element identifier. We use i for simple IDs, for which we only
know that they uniquely identify elements. The symbol o stands for
IDs reflecting document order; simple integer IDs used e.g., in [6,
10, 23] are a typical example. We use s to designate structural
identifiers, which allow to infer, by comparing two element IDs,
whether one is a parent/ancestor the other. They are produced e.g.,
by the popular (preorder, postorder, depth) labeling schemes based
on Dietz’s model [8]. We use p to designate structural identifiers
which allow to directly derive the identifier of the parent from that
of the child, such as the Dewey scheme in [24], or ORDPATHs [19].

An R symbol in an ID specification denotes an access restriction:
the ID of this XAM node is required (must be known) in order to
access the data stored in the XAM. This feature is important to
model persistent tree storage structures, which enable navigation
from a parent node to its children, as in [12, 9]. More generally,
R symbols allow to model arbitrary XML indexes, on structure and
values: key values must be known to perform an index lookup [15].

A tag specification of the form Tag denotes the fact that the el-
ement tag (or attribute name) can be retrieved from the XAM. Al-
ternatively, a tag specification predicate of the form [Tag= � ] signals
that only data from the subtrees satisfying the predicate is stored by
the XAM. The tag value can also be required; this is also marked
by the symbol R. Value and content specifications are very simi-
lar. The value(s) stored in a node corresponding to elements are the
textual children of the elements. The value(s) described by a node
corresponding to attributes are the attribute value(s).

XAM edges can be either parent-child edges, marked /, or ancestor-
descendent edges, marked //. We distinguish join, left outerjoin,
left semijoin, nest join and left nest outer join semantics for the
XAM edges, considering the parent node on the left hand). These
are marked by the symbols j, o, s, nj, respectively no. All these
joins correspond to structural relationships; nest join variants fur-
thermore allow the construction of complex nested tuples. The op-
erators will be detailed in Section 3.1.

The data from � stored by a XAM is a set (or list) of possibly

from a non-lossy storage, by combining accesses to several storage
modules. Here, we use Cont only for the storage models able to
retrieve it from a single persistent data structure.

1 � library �
2, 3 � book year=”1999” �
4 � title � Data on the Web � /title �
5 � author � Abiteboul � /author �
6 � author � Suciu � /author �� /book �
7 � book �
8 � title � The Syntactic Web � /title �
9 � author � Tom Lerners-Bee � /author �� /book �
10, 11 � phdthesis year=”2004” �
12 � title � The Web: next generation � /title �
13 � author � Jim Smith � /author �� /phdthesis �� /library �

Figure 2: Sample XML document.

nested tuples, whose schema is derived from the XAM, and whose
content is derived from � . This is formally defined next.

3. XAM SEMANTICS
The semantics of a XAM � over a document � is the data con-

tained in a storage module described by � over document � . It is
an instance of a nested relational data model [1, 2], enhanced with
order, and further specialized to our setting. This data model fea-
tures:

� a set of atomic data types � , such as String, integer etc.

� the tuple constructor, denoted
��� 

;

� the set constructor � � � , the list constructor � � � and the bag
constructor � � � � � .

The value of a tuple attribute can either be of atomic type, or a
set/list of tuples; nested tuples are not allowed. Lists (or sets) con-
tain homogeneous tuples; lists of lists are not allowed. Thus, the
model allows nesting of tuples and sets/lists, but only in alternation.
This model is well-adapted to the hierarchical, ordered structure of
XML data, and conceptually close to the XQuery data model [25].
It is also reminiscent of tuple-based XML algebras, as described
in [17]. However, XAM semantics adapts it to the needs of storage
description, as we explain next.

We define XAM semantics in two stages: first, omitting the R an-
notation (Section 3.1), then including them in Section 3.2. We start
by introducing some useful notions.

We use the notation ���  � �"! to denote the root of an XML docu-
ment, which is the parent of the top XML element in � .

DEFINITION 3.1 (TAG-DERIVED COLLECTION). Let
!

be an
element name and � be an XML document. We define the tag-
derived collection (set/list) of

!
as a set/list of tuples #%$ (ID: &(' , Val:)

, Tag: String, Cont: String):

#*$ � � +� � � �,� ��� � �,� � �.- � �,� � �0/ � �,�  � � !  	 �213� � �,� � ��/ �4!5�
# $ contains a tuple for each element �61�� whose tag is

!
. If # $ is

a list, then tuples follow the document order.
We similarly define the collection #87 (ID: &(' , Val:

)
, Tag: String,

Cont: String) as:

#97 � � ,� � � �,� ��� � �,� �	�.- � �+� � ��/ � �,�  � � !  	 �61:� �
Similarly, the collection #9;$ reflects all attributes nodes labeled!

, and # ;7 reflects all attribute nodes. <



R �������
ID Tag Val Cont

2 book ��� - - � book year=”1999” 	� title 	 Data on the Web � /title 	� author 	 Abiteboul � /author 	� author 	 Suciu � /author 	� /book 	
7 book ��� - - � book 	� title 	 The Syntactic Web � /title 	� author 	 Tom Lerners-Bee � /author 	� /book 	

#9;
�����
ID Tag Val Cont

3 year “1999” year=”1999”

11 year “2004” year=”2004”

# $�� $�� �
ID Tag Val Cont

4 title “Data on the Web” � title 	 Data on the Web � /title 	
8 title “The Syntactic Web” � title 	 The Syntactic Web � /title 	

12 title “The Web: next generation” � title 	 The Web: next generation � /title 	
Figure 3: Tag-derived lists on the document in Figure 2.

As an example, Figure 3 shows the tag-derived lists #�������� � �  ,
# $���$�� � � �  and # ;
����� � �  , where � is the sample document in Fig-
ure 2. For simplicity, we will only use the attribute names ID, Val,
Tag and Cont in association with the above types, and omit the
atomic attribute types.

The next ingredient of XAM semantics is logical structural joins.
Structural joins combine two collections of tuples based on a struc-
tural relationship between nodes whose IDs appear in the collec-
tions. We consider the parent-child and ancestor-descendent re-
lationships; accordingly, structural joins are denoted as ��� ��� for
parent-child, and ��� �� for ancestor-descendent. Notice that struc-
tural joins are asymetric; we distinguish e.g. ��� ��� from ��� ��� , de-
pending on which input contains the parent IDs. Furthermore, we
also use structural semi-joins such as  "! ��� , and structural outer-
joins such as  $#&% ��� .

DEFINITION 3.2 (STRUCTURAL JOINS). Let # and
�

be tu-
ple sets, and # � ' and

� � ( be attributes of type ��� . For a given
tuple

!$) 1
# , let child
� !�) � ' ��� � (  be the set of tuples in

�
whose

( attribute is a child of
! ) � ' .

The parent-child structural join of # and
�

, #*��� ��� � , is:

+
$�,"- ) �

!�)/. !$0 	 !$) 13# � !$0 1 ��� !�0 1 child
� !�) � ' � � � ( 5�

where
.

stands for tuple concatenation.
The parent-child structural semijoin of # and

�
, #1 2! ��� � , is:

� !�) 1�#	 child
� !�) � ' ��� � ( 43�65��

The parent-child structural outerjoin of # and
�

, #7 �#&% ��� � , is:8 $ , - ) � !�)/. !$0 	 !�) 13# � child
� !$) � ' ��� � ( 43�65 �

!�0 1 child
� !�) � ' ��� � ( 5�69

� !�)/.�: $�; 	 !$) 1�# � child
� !�) � ' ��� � (  �65 �

where
: $�; denotes a tuple with

!�0
’s schema, and whose attributes

are set to null (
:

).
When # and

�
are bags of tuples, the above definitions are mod-

ified to consider bag unions (which respect input cardinalities). Fi-
nally, when # and

�
are lists of tuples, child

� !�) � ' ��� � (  becomes
a list respecting the order of the children in

�
, and the unions are

ek

χk−1

nk

χk

. . . . . .

. . . . . .

χ

j

Figure 4: Generic XAM.

replaced by list concatenation. Thus, the result is ordered, first, by
# , and then by

�
order. <

As defined above, structural joins return flat tuples. Sometimes
it is desirable to construct nested structural join results; to that pur-
pose, nest structural join operators are introduced next.

DEFINITION 3.3 (NEST STRUCTURAL JOINS). Let # and
�

be two set of tuples, and # � ' and
� � ( be two attributes of type

��� . The nest parent-child structural join of # and
�

, denoted as
#*��� ���< �

, is:

+
$�,"- ) �

!�)/. ��= �
child

� !�) � ' ��� � (   	 !$) 1�# � child
� !�) � ' ��� � ( 43�65��

In the above, we append to tuple
!�)

a new attribute named s,
whose value is the set of all

!�0
tuples corresponding descendents ot! )

. The nest structural outerjoin of # and
�

, #> ?#@% ���< �
, is:

+
$ , - ) �

!$)A. ��= �
child

� !�) � ' ��� � (   	 !�) 1�# �

These definitions extend to the case when # and
�

are bags,
respectively, lists, as in the case of joins. <

Ancestor-descendent structural joins are similarly defined, using
the set of descendents of

!�) � ' in
�

instead of the set of children.
We omit the details. Notice that the above definitions also hold for
the case when # � ' is nested within a tuple collection attribute. The
next section will provide examples.

Nest structural joins have been mentioned in [20]; we formalized
them here within our data model to make this paper self-contained.

3.1 Semantics of a XAM without access re-
strictions

In this section, we focus on a XAM � without R annotations.
Without loss of generality, we assume � to be ordered.
Notation. We denote by � � � � � � the semantics of � over a docu-
ment � , namely, a set (or list, if � is ordered) of (possibly nested)
tuples whose content is extracted from � .

DEFINITION 3.4 ( � SEMANTICS). Let � consist of the sin-
gle node � . In this case, we have:

� � � � � � � � � root= ���  � �"! � ��� 5�
Thus, the document root is the only one matching � . <

DEFINITION 3.5 (TWO-NODE XAM SEMANTICS). Let � be
a XAM consisting of a node � connected to a node n � by an edge
labeled with BCB and j. The semantics of � over a document � is:

1. If n � is an element node, with a � �0/ ��� ��� of the form [Tag= D ],
then � � � � � � �*E�F���GHF � # $ � �    .

2. If n � is an element node with a different � ��/ � � � � (or none),
then, � � � � � � �*E F ��G F � # 7 � �    .
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Figure 5: Sample XAMs to illustrate XAM semantics.

3. If n � is an attribute node, with a � ��/ � � � � of the form [Tag= D ],
then � � � � � � �*E4F ��GHF�� #9;$ � �    .

4. If n � is an attribute node with a different � ��/ � � � � (or none),
then � � � � � � �*E F ��G F � # ;7 � �    .

In the above formula:

1.
GHF

is a selection on the conjunction of all predicates of the
form Val= � that appear in the value specifications of � nodes.GHF

checks each such predicate against the respective Val at-
tributes.

2.
E�F

is a projection which: (
�
) eliminates the root attribute,

(
���

) for every non- � node in � , retains the ID (respectively,
the Val, Tag, Cont attribute) only if the node has an ID spec-
ification of the form ID (respectively, value specification of
the form Val, tag specification of the form Tag, and content
specification of the form Cont) and (

�����
) eliminates duplicate

tuples.

<
Now, consider a larger XAM, such as � in Figure 4. In this

figure, � ��� � is the same as � but for the rightmost subtree, rooted
in node n � . Furthermore, � � is obtained by adding a � node on top
of n � , connected to n � by a descendent edge annotated j (join).

Simplifying assumption: IDs present. We start by assum-
ing that n � has an ID specification of the form ID.

DEFINITION 3.6 (SEMANTICS OF A XAM WITH IDS). Let �
be a XAM, � ��� � and �"� be the XAMs derived from � as in Fig-
ure 4. The semantics of � over a document � , denoted � � � � � � , is:

� � � � � � �6E�F���GHF�� � � � ��� � � � ��� � � �"� � �  
In the above,

GHF
and

E�F
are defined as in the previous definition,

while � stands for:

� structural join if e � is labeled j

� structural semijoin if e � is labeled s

� structural outerjoin if e � if e � is labeled o

� nest structural join if e � is labeled nj

� nest-structural outerjoin if e � is labeled no

The structural relation tested by the above structural (possibly nest)
join, outerjoin or semijoin depends on the edge e � : it is parent-child
if e � is labeled B , and ancestor-descendent if it is labeled B B . <

This definition constructs a structural join tree isomorphic to the
XAM tree itself; structural joins are paranthesized bottom-up.

Val
e2 [Tag="author"]

Tag

j

e1 RID o

[Tag="author"]
Val

e2

Tag

j

e1ID o

ID o
Val
[Tag="title"]

R
e3

o

ID o
Val
[Tag="title"]e3

o o o

χ5χ4

Figure 6: Sample XAM with access restrictions.

General case: XAMs without IDs. Now assume n � does
not have an ID specification of the form ID, and let �	� be a XAM
identical to � but where n � has such an ID specification. Intuitively,
the semantics of � and �
� are identical except for the missing IDs
in � . Thus:

DEFINITION 3.7 (SEMANTICS OF A XAM IN GENERAL). Let
� be a XAM and � � be the XAM obtained from � by adding ID
specifications to � ’s node n � as above. The semantics of � is:

� � � � � � �6E�F � � � � � � � � 
where the semantics of

E F
is specified in Definition 3.5. <

For example, consider the XAMs in Figure 5. Let � be the
XML document in Figure 2, where node numbers are used as order-
preserving IDs. By Definition 3.5, we obtain:

� � � � � � � = [e � (ID=2, Tag=”book”), e � (ID=7, Tag=”book”)]

In the above, and in the sequel, XAM node names appear explicitly
in every tuple, to facilitate reading.
We obtain � � � � � � � by a structural semijoin on � � � � � � � and #%;
����� :

� � � � � � � = [e � (ID=2, Tag=”book”)]

Only the first tuple from � � � � � � � contributed to � � � � � � � , since only the
first book had a match in #9;
����� .
Applying again Definition 3.6 on � � � � � � � , we obtain:

� � �	� � � � = [e � (ID=2,Tag=”book”,
e � [(ID=4,Tag=”title”,Val=”Data on the Web”)])]

3.2 Semantics of a XAM with access restric-
tions

We now extend the XAM semantics to account for the R (re-
quired) marker. Intuitively, values for the required fields have to be
known, to be able to access the data stored by the XAM.

The semantics of a XAM with access restrictions (represented
by R markers) can only be defined with respect to a set of bindings,
that is, a set of values for the required attributes. Bindings for a
XAM � consist of (possibly nested) tuples of values; the type of
these tuples is the projection of � ’s type, over the attributes marked
with R.

For instance, consider the XAM �� in Figure 6. �	� contains in-
formation about elements having “title” and “author” sub-elements.
However, in order to access this information, one must provide the
tag of the elements corresponding to e � , and the title associated to
these elements. A typical storage structure modeled by � � would
be an index on publications, with a composite index key consisting
of the publication type and title (the required attributes in � � ).

For instance, consider the following binding tuple for �	� :
D�� � = e � (Tag=”book”, e � [(Val=”Data on the Web”)])

The information content of �	� on the document � from Figure 2,
with the bindings list � ! � � � , is:



Algorithm 1: Data accessible from tuple
!

with a binding
tuple �

input :
! � � � � � � � � � � � �&�  , where � ��� � � ��� � � � � � � ��� are
marked R;
binding tuple

!
�
� � ��� � � ��� � � � � � � ��� 

output:
!�� �!$)
	 0��� $1

/*
! )
	20

is a tuple having
!
’s type, atomic attributes set to:

, and collection attributes set to empty collections */
foreach � ��� in � ��� � � ��� � � � � � � ��� do2

/* check if
!

matches the binding in � */
if � ��� is of an atomic type then3

if
! � � ��� � �(� � ��� then4 ! )
	 0 � � � � � ! � � � �5

else6

return � �7

else8
/* � ��� ’s type is a list of tuples */!�)
	20 � � ��� ��� $���- $�� �� ��� $�� ��- � � �� � ! � � ! � �9

if
!$)�	20 � � ��� � � � then10

return � �11

foreach attribute ��� , ��� �!�#" , ��� B1�� ��� � � � � � � ��$ do12 !�)
	 0 � � � � ! � � �13

return � !�)
	 00�14

e � (ID=2, Tag=”book”,
e � [(Val=”Abiteboul”), (Val=”Suciu”)],
e � [(ID=4, Val=”Data on the Web”)])

Now consider another binding tuple
!
� � for �&% :

D � � =e � (Tag=”article”, e � [(Val=”Data on the Web”)])

The information content of �	� on document � with the binding
list � ! � � � is empty, since � does not contain any article called “Data
on the Web”.

Let
!
� � be the binding tuple:

D�� � =e � (Tag=”book”, e � [(Val=”The Syntactic Web”)])

The information content of �	� on document � , with the bindings
� ! � � � ! � � � is:

[e � (ID=2, Tag=”book”,
e � [(Val=”Abiteboul”), (Val=”Suciu”)],
e � [(ID=4, Val=”Data on the Web”)]),

e � (ID=7, Tag=”book”,
e � [(Val=”Tom Lerners-Bee”)],
e � [(ID=12, Val=”The Web: next generation”)]) ]

To formalize the above, we need the notion of tuple intersection.
Let

!
and � be two tuples such that the signature of � is a projection

on the signature of
!
. Then,

!'� � represents the data accessible
from

!
given � ; this data can consist of zero or one tuple, containing

(possibly part of) the data from
!
.3

Tuple intersection is described in Algorithm 1, which computes
the data accessible from a tuple

!
, given a binding tuple � . If

!
and

� disagree on the values of some atomic attributes, then no infor-
mation from

!
can be accessed using � (lines 2-7 of the algorithm).

This is similar to an unsuccessful index lookup, with a search key
3Notice that in this context, tuple intersection is not commutative.

absent from the index. If
!

and � agree on their common atomic
attributes, lines 8-11 describe which part of their common complex
attributes can be obtained from

!
: the intersection of

!
’s and � ’s val-

ues for these attributes (
�

stands for list concatenation). Again, if
such an intersection is empty, no data is reachable from

!
using � .

Finally, the values of
!

attributes whose names do not appear in � ’s
types are accessible (lines 12-13).

We illustrate nested tuple intersection with an example.
Consider the following tuple

!
and binding tuple � � :

D =e � (ID=2, Tag=”book”,
e � [(Val=”Abiteboul”), (Val=”Suciu”)],
e � [(ID=4, Val=”Data on the Web”)])( � =e � (ID=2, e � [(Val=”Suciu”), (Val=”Buneman”)])

The computation of
!)� � � initially sets:

D )
	 0 =e � (ID= * , Tag= * , e � [ ], e � [ ])

Applying lines 2-9 in Algorithm 1 transforms
!�)
	20

into:

D )
	20 =e � (ID=2, Tag= * , e � [ ], e � [ ])

and then successively into:

D )
	20 =e � (ID=2, Tag= * ,
e � [(Val=”Abiteboul”) + (Val=”Buneman”) ,

(Val=”Suciu”) + (Val=”Buneman”) ,
(Val=”Abiteboul”) + (Val=”Suciu”) ,
(Val=”Suciu”) + (Val=”Suciu”)],

e � [ ]),

D )
	 0 =e � (ID=2, Tag= * , e � [(Val=”Suciu”)], e � [ ])

Lines 10-11 in Algorithm 1 copy
!
’s attributes not appearing in � �

into
! )
	20

, and thus:

D )
	20 =e � (ID=2, Tag=”book”, e � [(Val=”Suciu”)],
e � [(ID=4, Val=”Data on the Web”)])

Finally,
!)� ��� � � !$)
	 0.� .

We now formally define the semantics of a restricted-access XAM
� with respect to a set of bindings.

DEFINITION 3.8 (RESTRICTED XAM SEMANTICS). Let � be
a XAM with some required attributes, and �.- be a XAM obtained
from � by erasing all R markers. Let / be a list of binding tuples
for � . The semantics of � over a document � , with bindings / , is
defined as: � � � � /  � � � � 0

� - � � $�-21 1 F4365 587
!)� �

<
The following example illustrates restricted XAM semantics.

Consider the XAM � � in Figure 6. Erasing all its R marks leads
to the XAM �&9 shown next to it. Let � be the document in Figure 2.
By Definition 3.7, we have:: : ; 9=< < � =[e � (ID=2, Tag=”book”, e � [(Val=”Data on the Web”)],

e � [(ID=5,Val=”Abiteboul”), (ID=6,Val=”Suciu”)]),
e � (ID=7, Tag=”book”, e � [(Val=”The Syntactic Web”)],

e � [(ID=9, Val=”Tom Lerners-Bee”)]),
e � (ID=10, Tag=”phDThesis”,

e � [(Val=”The Web: next generation”)],
e � [(ID=13, Val=”Jim Smith”)])]

Denoting the three tuples above as
! � , ! � and

!
� , we have � � �&9 � � � �

� ! � � ! � � ! � � . Let / be the following bindings for � � :>
=[e � (Tag=”book”, e � [(Val=”Data on the Web”)]),

e � (Tag=”book”, e � [(Val=”The Syntactic Web”)])]
=
: ( ��? ( � <

Applying Definition 3.8, we obtain:

� � �
� � /  � � � � � ! � � ! � � !� � ! � � ! � � !� � !
�
� !

� � !�� ! � � ! � � !� � ! � � ! � � !� � !
�
� !

� � � � ! � � ! � � !� � ! � � ! � �  � � ! � � ! � � .



4. RELATED WORKS AND PERSPECTIVES
We have presented XML access modules, a formalism with clean

algebraic foundations for describing XML storage structures. XAMs
are reminiscent of query pattern formalisms, such as the Abstract
Tree Patterns [20] or of clustering strategies in object-oriented sys-
tems (eg. [4]). However, XAMs are focused on storage modelling,
as reflected by their ID specifications, and required fields. . This ap-
proach compares most directly to the Agora [16], Mars [7], LegoDB [5]
and ShreX [3] projects. We present a formalism with well-defined
semantics which, which departs from these previous approaches in
that:

� it is based on a nested (as opposed to relational) algebraic
model, better suited to XML querying;

� it models important properties of element IDs, with a strong
impact on query performance;

� it provides an accurate model for XML indexes, since it al-
lows to specify the fields whose values have to be known
(that is, the index key), in order to access the index data.

� it extends the access patterns paradigm to nested data models,
thus encompassing complex XML indexes;

One may wonder why we do not describe storage structures by
XQuery queries, and apply view-based query rewriting. The main
reason is that the notion of XQuery materialized view is not yet
clearly defined, since the result of an XQuery is considered a dif-
ferent (thus, disjoint) document from its input. Also, features such
as interesting ID properties and required fields are not easy to ex-
press via XQuery.

How to use XAMs ? Given an XQuery query, the optimizer has
to find which XAMs, and in which combination, provide the data
that is needed by the query. Notice that XAMs alone cannot cap-
ture all the operations that the query may perform: for instance,
joins, re-structuring, new element construction etc. have to be per-
formed on top of the accesses to XAM data. This is rightfully so,
since XAMs only provide data access, and do not cater to other
transformation that the query may apply.

The process of XAM selection for a given query should be driven
by a set of constraints describing the input document. Indeed, a
XAM containing all title elements can be used to answer a query
for //book/title only if we know that no other titles appear in the
document. Several classes of constraints can be considered; DTDs
or XML Schema constraints are just one possible example.

We are currently devising an algorithm for selecting and combin-
ing meaningful XAMs for a query, in the simple case in which con-
straints are encapsulated in a DataGuide. In a nutshell, a DataGuide
can be seen as a compact representation of a set of path constraints
which the document satisfies. Our algorithm finds useful XAMs
for a query, by unfolding the query and the XAMs based on the
path constraints, and then identifying portions of the XAMs that
provide data needed by the query. This algorithm, in the particu-
lar setting of path constraints, is a close relative of the well-known
bucket algorithm from the Information Manifold, enhanced with
proper treatment of the R annotations. We plan to extend this to
other types of constraints, and in particular, to CDuce types (see
www.cduce.org).
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