
XPath 2.0: It Can Sort!

Pavel Hloušek
Dept. of Software Engineering

Phaculty of Mathematics and Physics
Charles University, Prague

pavel.hlousek@mff.cuni.cz

ABSTRACT
As XML finds its place in information technology, query
languages for XML attract much attention. Among them
XPath is the most known. This article reveals a surpris-
ing fact that the upcoming XPath 2.0 is capable of sorting
sequences, which is proved formally. We also mark out an
incompleteness of XQuery Core and an insufficiency of def-
inition of XQuery Core sorting semantics. The fact that
XPath 2.0 can sort arbitrary sequences is used to fix it.

1. INTRODUCTION
In recent years, XML has been widely adopted by IT indus-
try, mainly for its suitability for data exchange in heteroge-
neous systems. However, this is not the only way XML is
used. There is a number of projects that try to store XML
documents in their native form. Both these XML applica-
tions need a way to query XML data.

A lot of languages has been developed to query XML, some
of them inspired by query languages for semistructured data
like Lorel [1], Quilt [5], XML-QL [8], some of them written
from scratch like XSLT [6]. Now, the most recognized XML
query language is XPath.

XPath [7] first appeared as a part of XSLT to match patterns
and find nodes in an XML document. Nowadays, W3C is
almost done with development of XPath 2.0, which is a part
of an effort to provide XPath 2.0, XQuery 1.0, and XSLT
2.0 with the same underlying strongly typed data model.

In this paper, we show that though the upcoming XPath 2.0
has no explicit syntax to express sorting, it can sort arbitrary
sequences, which we find surprising. The only constraint is
that a sorting condition, i.e. whether one item of a sequence
is less than another item of this sequence, is expressible in
XPath 2.0 and that this condition represents a partial order
on items of the sequence being sorted.

As XPath 2.0 is a subset of XQuery 1.0, we get interesting

consequences in XQuery. We identify an incompleteness of
XQuery Core and also an insufficiency of formal semantics
definition of sorting in XQuery and show how our sorting
expression can be used to fix it.

Another consequence of XPath 2.0’s capability of sorting is
that XQuery really does not add too much to XPath 2.0.
If we think it over, it is only the ability to define functions
and construct new nodes. Everything else can be realized in
XPath.

Contributions. The main contribution of this paper is the
formal proof of XPath 2.0’s capability of sorting arbitrary
sequences. The following are the main features of our ap-
proach to sorting in XPath.

• Generality. Any sequence of items can be sorted.

• Complex ordering. The ordering expression can be any
XPath 2.0 expression, thus orderings like “order by last
name and within equal last names order by first name”
are possible.

• Inefficiency. By extending XPath with range expres-
sions like (1 to count(//cd)), and for-return expres-
sions, the language became capable of sorting. But an
extra cost has to be paid: it is awfully inefficient with
time complexity O(n3) in a number of items in the
sorted sequence. A question arises, if some form of an
order by expression should be added to the language
to achieve better performance of XPath processors.

As a consequence of sorting in XPath, it is possible to ex-
press sorting in XQuery while not breaking the consistency
of XQuery Core, unlike the nowadays W3C specification of
XQuery formal semantics. More on this in section 7.

Structure. This article is organized as follows. First in
section 3, we introduce a data model that we use. Then in
section 4, we introduce selected features of XPath 2.0 that
distinguish it from its 1.0 predecessor. Sorting in XPath is
first introduced on an example in section 5, which is then
formalized and proved to work correctly in section 6. Finally
in section 7, we explain that inconsistency in sorting seman-
tics of XQuery can be fixed using our sorting expression.
The conclusion is provided in section 8.

2. RELATED WORK
Since we do not know about any similar work on this topic,
we rather briefly introduce the family of W3C specifications
in this section.

First of all, XML itself is defined in [4]. The common data
model is described in [10] with references to XML Schema
typing defined in [4]. XPath 2.0 itself is defined in [2] and
XQuery 1.0 in [3]. Both XPath and XQuery share a common
set of functions and operators defined in [12]. For XPath and
XQuery formal semantics is defined in [9].

All of these W3C specifications except XML itself are so
called Last Call Working Drafts, which means that changes
may appear later in them.

3. DATA MODEL
The family of W3C upcoming XML query languages XPath
2.0, XQuery 1.0, and XSLT 2.0 has been designed to share
the same underlying data model [10]. The emphasis is put
on strong typing, which is not what we are interested about.

In this article, we use the untyped core of this model. The
basic structure is a sequence. A sequence is an ordered se-
quence of items, which are either node references or atomic
values. With 〈S,≺S〉 we denote a sequence where S is a set
of items and ≺S ⊆ S × S is a total order of items in S.

In fact, when order of items in a sequence is defined this way,
we have to extend this data model such that all items have
an identity, even atomic values. So, sequences like (2,1,2)
can be described in the model. However, this sort of item
identity is needed only to formally express order of items
and is not referred to by XPath expressions. Notice, that
item identity is different from node identity, which is not
affected and which can be referred to by XPath expressions.

4. XPATH 2.0
In this section, we briefly introduce XPath 2.0 focusing on
selected enhancements of the language as compared to XPath
1.0.

XPath 2.0 [2] is a compact language with non-XML syntax,
whose main purpose is to identify parts of an XML docu-
ment. It is developed by the W3 Consortium as a part of an
effort to provide XPath, XQuery, XSLT, and other specifica-
tions with the same underlying strongly typed data model.
XPath 2.0 evolved as an extension of a successful XPath
1.0 [7], which has been a W3C recommendation since 1999.

As of writing this article, XPath 2.0 specification is still a
W3C Working Draft, which means that changes to the lan-
guage may appear later. We refer to XPath 2.0 specification
dated 11th February 2005.

We identify several features of XPath 2.0 that distinguish it
from its 1.0 predecessor and that are important to a reader
who wants to understand sorting capabilities of the lan-
guage.

Sequences. The prior version of XPath has been designed
to return a set of nodes often referred to as a nodeset. Thus,
no order could have been defined on the result. This has

changed in XPath 2.0 that is designed to return an ordered
sequence of items, where an item is either a node or an
atomic value.

Sequence constructors. While XPath 1.0 has no expres-
sion to construct data that do not exist in a queried doc-
ument, XPath 2.0 introduces an expression to construct a
sequence. For example, ("hello", "world") is a sequence of
two string values: hello, and world. Further, it introduces so
called range expression that constructs a sequence of inte-
gers. For example, (1 to 3) expression constructs the same
sequence as (1, 2, 3) expression. An important property
of a range expression is the fact that an expression can ap-
pear in it, e.g. (1 to count(//cd)) constructs a sequence of
integers 1, 2, . . . , number of CDs in a document.

Sequence iterator. XPath 2.0 introduces for-in-return ex-
pression that iterates over a sequence, e.g. for $i in //cd

return $i/title returns a title for each CD in a document.
The semantics of the for-in-return expression is that a return
expression is evaluated once for each variable binding, where
a variable is bound to each item in a sequence returned by
the in expression.

Conditional expression. XPath 2.0 defines an if-then-
else expression with usual meaning. For example, if (0 =

count(//cd)) then 0 else 1 returns 0 if there is no CD ele-
ment in a document, otherwise it returns 1.

In the following, we use function count() that given a se-
quence returns a number of items in that sequence, and
function empty() that given a sequence returns true only if
the sequence has no items. Both these functions are defined
among XPath and XQuery standard functions in [12].

5. BY EXAMPLE
Here, we present a general XPath expression that sorts items
in a sequence represented by an XPath expression S. The
whole expression is for clarity divided into three separate
functions that we call my:is-less-than(), my:count-less-than(),
and my:sort() that can be assembled together to form a sin-
gle XPath expression. The three functions have the follow-
ing meaning.

First, function my:is-less-than($x, $y) represents a less-than
relation on items from S. It returns true iff $x is less than $y,
whatever to be less than means. In the following, we sim-
ply use the usual comparison operator <, but more complex
expressions can be provided as shown later.

my:is-less-than($x, $y) {
$x < $y

}

Second, function my:count-less-than($x, S) returns a num-
ber of nodes in a sequence S that are less than $x by means of
the less-than relation defined by the my:is-less-than() func-
tion. The for loop iterates over S creating so a sequence
of items from S that are less than $x. Function count() is
applied to this sequence to count a number of items that are
less than $x in S.

my:count-less-than($x,S) {
count(
for $y in S
return

if (my:is-less-than($y, $x))
then $y
else ()

)
}

Finally, function my:sort(S) returns the sorted sequence.

my:sort(S) {
for $i in (0 to count(S) - 1)
return
for $x in S
return

if ($i = my:count-less-than($x, S))
then $x
else ()

}

Let’s look how it works. We examine the outer loop first.
In its first iteration, it returns each item x in S for which
there exists no item y in S such that y is less than x – the
minimum of S. In its second iteration, it returns each item
x in S for which there is exactly one node y in S that is
less than x. In its third iteration, exactly two, etc. In its
final iteration, it returns each item x in S for which all other
items in S are less than x – the maximum of S.

If there is a subset of nodes that are equal in S by means
of the less-than relation then they will all be returned in
a single iteration of the outer loop. In such a case, some
iterations return nothing. The inner loop guarantees that
the initial sequence order of the equal nodes is preserved in
the resulting sequence.

The following XPath 2.0 expression is an example of an as-
sembled expression that returns “sorted CD titles”.

for $i in (0 to count(//cd/title) - 1)
return

for $x in //cd/title
return
if ($i = count(

for $y in //cd/title
return

if ($y < $x)
then $y
else ()

)
)
then $x
else ()

Earlier, we mentioned that it is possible to express more
complex sort order by modifying the my:is-less-than() func-
tion. Since this is the only place where the semantics of the
less-than relation is defined, it is also the only place were it
needs to be changed.

For example, we want to order a sequence by authors first
by their last and second by their first name. We change the
my:is-less-than() function to the following.

my:is-less-than($x, $y) {
($x/last < $y/last) or
($x/last = $y/last and $x/first < $y/first)

}

One more example. The following XPath 2.0 expression
returns “CD titles ordered by CD authors first by their last
name and second by their first name”. Notice, that this is a
special case of the above that sorts according to information
that lies outside the subtree of the sorted nodes.

for $i in (0 to count(//cd/title) - 1)
return

for $x in //cd/title
return
if ($i = count(

for $y in //cd/title
return

if (($y/parent::cd/author/last <
$x/parent::cd/author/last)

or
(($y/parent::cd/author/last =

$x/parent::cd/author/last)
and
($y/parent::cd/author/first <
$x/parent::cd/author/first))

then $y
else ()

)
)
then $x
else ()

6. FORMALLY
In this section, we formally define expression Sort and prove
that it sorts each given sequence. Notice, that we define
sorting with respect to a given partial order, which is handy
later as XQuery defines its ordering semantics on the partial
order basis.

Throughout this section, we consider only such partial order
relations whose characteristic functions are expressible with
some XPath expression.

First, we define equivalence =R on items in partial order R.

Definition 1. Let R be a partial order. With =R we
denote a set of all items that are equal in R.

x =R y iff R(x, y)&R(y,x)

Next, we define the less-than relation with respect to a given
partial order R by removing equivalence from R. This is
needed, since we do not want to count items that are less
than or equal to the current item, which is the meaning of
R, but rather we want to count items that are sharply less
than the current item.

Definition 2. Let R be a partial order. With <R we
denote a total order R\ =R.

We should note, that if a characteristic function of R is
expressible with an XPath expression then even =R and

<R are expressible with an XPath expression using boolean
operators. We should also note, that the my:is-less-than()
function defined in the previous section is an example of a
characteristic function of <R relation.

Lemma 1. Let S be a set, and R ⊆ S×S be a partial order
on S. Then for each x, y ∈ S either x =R y, or x <R y, or
y <R x.

Proof. This comes from the relations between partial order
R, equivalence =R, and total order <R, namely R ==R

∪ <R and =R ∩ <R= ∅. 2

The following formally defines the natural notion of number
of items in a sequence that are less than the given item,
where CLT stands for count less than.

Definition 3. For S a set, R ⊆ S×S a partial order on
S, and x an item, we define function CLTR(x, S).

CLTR(x, S) =def |{ y ∈ S | y <R x }|

Next, we define the CountLessThan XPath expression with
respect to the given partial order.

Definition 4. Let S be a set, and R ⊆ S × S be a par-
tial order on S. With expression CountLessThanR(x, S) we
denote the following XPath expression.

count(

for $y in S
return

if ($y <R x)
then $y

else ()

)

The following lemma says that the CountLessThanR(x, S)
expression really counts items from S that are sharply less
than x in terms of R. We provide the proof in full detail
in [11].

Lemma 2. Let S be a set, and R ⊆ S × S be a partial
order on S. Then the result of CountLessThanR(x, S) is
equal to CLTR(x, S), which is a number of items in S that
are less than x in terms of <R.

The following lemma provides bounds to CLTR(x, S) and
due to Lemma 2 to results of CountLessThanR(x, S) as well.

Lemma 3. Let S be a nonempty set, and R ⊆ S ×S be a
partial order on S. Then for each x ∈ S the following holds.

0 ≤ CLTR(x, S) ≤ |S| − 1

Proof. The lower bound is equal to zero, as the cardinality
of a set cannot be less than zero.

The upper bound cannot be more than |S|, which is guar-
anteed by the first condition y ∈ S in the definition of
CLTR. Moreover, it cannot be more than |S| − 1, which
is guaranteed by the second condition x <R y. As <R is
irreflexive, for each x ∈ S at least x itself is not present in
{ y ∈ S | y <R x }. 2

Notice, that the lower bound is reached for all minimal items
in S, i.e. items for which there is no less-than item in S,
and that there can be more of them equal to each other in
terms of =R. Conversely, the upper bound is reached only
for the maximum item in S, which has not to exist if there
are multiple maximal items. If there are multiple maximal
items then they are again equal to each other in terms of
=R.

The following lemma claims that equal items have equal
counts of less-than items.

Lemma 4. Let S be a set, and R ⊆ S × S be a partial
order on S. Then for each x, y ∈ S such that x =R y the
following holds.

CLTR(x, S) = CLTR(y, S)

Proof. This lemma can be rewritten as follows.

x =R y implies (∀z ∈ S : z <R x implies z <R y)

For contradiction, suppose that the above is not true, so
suppose that such z ∈ S exists, for which z <R x and not
z <R y. Combining this fact and Lemma 1, we get that
either i) y <R z, or ii) z =R y holds.

The following inequalities are contradictions, which comes
from the fact that <R is a total order, and =R is an equiv-
alence.

Ad i) z <R x =R y <R z.

Ad ii) z =R x =R y <R z. 2

Next, let’s define for a sequence the property of being sorted.

Definition 5. Let 〈S,≺S〉 be a sequence, and R ⊆ S×S
be a partial order on S. We say that a sequence 〈S ′,≺S′〉 is
a sequence 〈S,≺S〉 sorted with R iff for each x, y ∈ S the
following conditions hold.

i) S′ = S

ii) x <R y implies x≺S′y
iii) x =R y implies x≺Sy implies x≺S′y

We refer to a sequence 〈S,≺S〉 as the initial sequence and a
sequence 〈S′,≺S′〉 as the sorted sequence.

The first condition of the above definition requires the sorted
sequence to comprise exactly the same items as the initial
sequence.

The second condition requires that if x is less than y in terms
of the sorting order R, then x has to precede y also in the
sorted sequence.

The third condition requires that if two items are equal in
R then the order of x, and y in the initial sequence has to
be preserved in the sorted sequence.

Notice, that we define a sequence to be sorted with respect
to an initial sequence. Thus, an initial sequence has to exist
prior to sorting it.

The above definition of a sequence being sorted is based on
the semantics of XQuery’s stable sorting, which sticks to the
idea of preserving the order of the initial sequence. We make
use of this to fix the formal semantics of XQuery sorting in
section 7.

Next, we define the XPath expression that we claim to sort
a given sequence.

Definition 6. Let 〈S,≺S〉 be a sequence, and R ⊆ S×S
be a partial order on S. With expression SortR(〈S,≺S〉) we
denote the following XPath expression.

if (empty(S))
then ()
else

for $i in (0 to count(S) - 1)
return

for $x in 〈S,≺S〉
return

if ($i = CountLessThanR($x, S))
then $x
else ()

Finally, we prove that the just defined XPath expression
Sort really sorts a given sequence.

Theorem 1. Let 〈S,≺S〉 be a sequence, and R ⊆ S × S
be a partial order on S. Let 〈S′,≺S′〉 = SortR(〈S,≺S〉) be a
sequence. Then 〈S′,≺S′〉 is a sequence 〈S,≺S〉 sorted with
R.

Proof. If S is empty then the result of the above expression
is an empty sequence, as guaranteed by the outermost if
expression. In such a case, the resulting sequence is trivially
sorted. In the following, we assume that S is non-empty.

First, we prove that S′ = S, which is the first condition
of the Definition 5 of a sorted sequence. Lemma 3 pro-
vides bounds to CountLessThanR expression, which is 0 ≤
CLTR(x, S) ≤ |S| − 1. Since the outer loop of SortR iter-
ates over all values within these bounds, then for each x ∈ S
there exists such i that i = CLTR(x, S). For such i, item x
is returned, thus S ⊆ S′. Since CLTR is a function, there
exists exactly one such i for each x ∈ S, therefore S′ = S.

Second, we prove the condition ii) that requires that x <R
y implies x≺S′y. Let’s suppose that x <R y holds. Then
clearly CLTR(x, S) < CLTR(y, S), which is obvious from
Definition 3 of CLTR. Since the outer loop of SortR iterates
over i in a growing manner, x is returned sooner than y,
which defines the order of x, and y in the resulting sequence.
Thus, we have x≺S′y.

Similarly, we prove the last condition of the definition of a
sorted sequence that x =R y implies (x≺Sy implies x≺S′y).
Suppose that x =R y and x≺Sy, which means that x and
y are equal in terms of the sorting relation R and that x
precedes y in the initial sequence. From Lemma 4, we have
CLTR(x, S) = CLTR(y, S), so x and y are returned in the
same iteration of the outer loop of SortR. From the seman-
tics of the for-return expression comes the following. Since
the inner loop iterates over S in the order defined with ≺S,
$x is bound to x prior to y. Therefore x is returned sooner
than y. Thus, we have x≺S′y. 2

The proof of this theorem is provided in full detail in [11].

7. FIXING XQUERY SORTING SEMANTICS
In this section, we briefly inspect sorting semantics of XQuery,
explaining inconsistency of its definition in W3C’s XQuery
formal semantics [9]. We explain that consistency can be
gained again if we remove the order by clause from XQuery
Core, which does not affect the expressive power of the lan-
guage. This is a consequence of the ability of XPath 2.0 to
sort sequences.

Since XQuery allows a lot of syntactic sugaring, a subset
called XQuery Core has been extracted from it, on which
formal semantics has been defined. We can transform an
XQuery query to an XQuery Core query through a process
called normalization. The Core language is supposed to be
equally expressive as the full language, but one can easily
find out that it is not. It is sorting, that one cannot express
in XQuery Core.

While the grammar of XQuery Core defines a nonterminal
for an order by clause, there is no grammar production that
refers to it. Further, the normalization of an order by clause
of an XQuery query is also omitted in the specification, men-
tioning only that a data type for a tuple would have to be in-
troduced to define the formal semantics of sorting and since
a tuple is not in a data model the specification does not
define the formal semantics of sorting at all.

In [11], we show that an order by clause has not to appear
in XQuery Core, since i) the semantics of XQuery sorting
is based on partial order, ii) we use SortR to sort according
to that partial order, and iii) tuples can be simulated with
other constructs of the language.

Here, we only give an example FLWOR query and its trans-
formation to an equal query without an order by clause.
For technical details concerning a general FLWOR query
see [11]. Prior to transforming an example query, we put
some light on a problem with an order by clause in XQuery
Core.

We use the following query in our demonstration.

for $a in //author,
$b in //artist

order by $a/last,
$b/last,
$a/first

return <pair>{ $a, $b }</pair>

It returns pairs consisting of an author and an artist sorted
by author’s last name, artist’s last name, and author’s first
name. The sorting condition is somewhat artificial, but we
want it that way.

7.1 XQuery Core Fails
How this query should be normalized? A reader familiar
with XQuery Core can clearly see that it is normalized to
two nested for expressions. But where to put the order by
clause? We cannot put it as a whole to the outer for ex-
pression that declares variable $a, since the order by clause
refers to variable $b that is declared in the inner for expres-
sion, which is out of scope. OK, let’s try then the inner
for expression. Now, both $a and $b are declared, but $a
is bound to an author element, so we cannot sort according
to author’s values. The only chance is to split the order by
clause as in the following listing.

for $a in //author
order by $a/last, $a/first
return

for $b in //artist
order by $b/last
return

<pair>{ $a, $b }</pair>

We can see that splitting and order by clause can end up in
a query that is not equal to the initial one, as for the same
author’s last name, it sorts first according to author’s first
name and then according to artist last name, which is not
what we desired. This is the reason, why an order by clause
should not be included in XQuery Core.

7.2 Transformation
The transformation of an FLWOR query to an equal query
without an order by clause is rather simple. It is done in
three steps: i) we rewrite the initial query not to contain an
order by clause, but to contain order values, ii) we define
a less-than relation R according to an order by clause from
the initial query to be used with our SortR expression, and
iii) we extract the result.

First, we rewrite the initial query to return a sequence of
tuples, where a tuple is an element constructed for each vari-
able binding. It contains a value of every sorting expression
from an order by clause and a result value.

let $stream := <stream>{
for $a in //author
return

for $b in //artist
return

<tuple>
<ordval>{ $a/last }</ordval>
<ordval>{ $b/last }</ordval>
<ordval>{ $a/first }</ordval>
<result>{

<pair>{ $a, $b }</pair>
}</result>

</tuple>
}</stream>

Let’s make a little technical note about this expression. We
create tuple elements as children of a new stream element, as
it is the only way we can preserve the information about the
order in which $a and $b are bound. If the parent stream
element was not created, then the order of tuple elements in
the resulting sequence would be implementation dependent.

Second, we transform the order by clause to a less-than rela-
tion R, which can be expressed with an XQuery expression
as follows.

x/ordval[1] lt y/ordval[1] or (
x/ordval[1] eq y/ordval[1] and (

x/ordval[2] lt y/ordval[2] or (
x/ordval[2] eq y/ordval[2] and

x/ordval[3] lt y/ordval[3]
)))

Notice, that x and y refer to tuple elements in the example
above. The expression is true if the first order value (au-
thor’s last name) of tuple element x is less than the first
order value of tuple element y, or if these values are equal,
then it is true if the second order value (artist’s last name) of
x is less than the second order value of y, and if even these
are equal, then third order values are compared (author’s
first name).

Also notice, that the characteristic function of a lexico-
graphic order defined with an order by clause in a FLWOR
expression, can be always expressed with an XQuery expres-
sion likewise.

Now, we can sort the sequence of tuples with our SortR
expression.

let $sorted := SortR(for $t in $stream/tuple return $t)

The $sorted variable now contains a stream of tuple elements
sorted according to the same condition as expressed by the
order by clause of the initial query.

Finally, we simply pull the results out of this sorted sequence
with the following expression.

for $t in $sorted
return $t/result/*

To sum up, we transformed the initial query to an equal one
that has no order by clause.

8. CONCLUSIONS
We demonstrated that XPath 2.0 is a language with great
expressive power, which is particularly a come out of intro-
ducing the for-return expression and a sequence constructor
of atomic integer values. We proved that the power is good
enough to sort sequences according to a given partial order,
which is a natural means of sorting.

There are two main consequences of sorting capability of
XPath.

First, though sorting is expressible in XPath, it is by no
means efficient: complexity of O(n3) in number of items in
a sequence being sorted is not satisfactory at all. Therefore
a question arises, whether XPath should be extended to ex-
press sorting explicitly, which would allow XPath processors
use an efficient sorting algorithm.

Second, authors of XQuery formal semantics thought that
sorting semantics is not expressible within a data model,
which causes an inconsistency in the specification. In this
article, we outlined how sorting in XPath can be used to
express sorting semantics of XQuery. We referred a more
interested reader to a full detail description in [11].

9. ACKNOWLEDGEMENTS
This research was supported in part by GACR grant 201/03/0912.
The author’s participation at the workshop was partially
supported by the ”Trust Fund for young DB researchers in
the Czech Republic”.

10. REFERENCES
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and

J. L. Wiener. The lorel query language for
semistructured data. Int. J. on Digital Libraries,
1(1):68–88, 1997.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernandez, M. Kay, J. Robie, and J. Simeon. XML
path language (XPath) 2.0, 2005. W3C Working
Draft. http://www.w3.org/TR/xpath20/.

[3] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, and J. Simeon. XQuery 1.0: An
XML query language, 2005. W3C Working Draft.
http://www.w3.org/TR/xquery/.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
F. Yergeau, and J. Cowan. Extensible markup
language (XML) 1.1, 2004. W3C Recommendation.
http://www.w3.org/TR/xml11/.

[5] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An
xml query language for heterogeneous data sources. In
D. Suciu and G. Vossen, editors, WebDB (Selected
Papers), volume 1997 of Lecture Notes in Computer
Science, pages 1–25. Springer, 2000.

[6] J. Clark. XSL transformations (XSLT) version 1.0,
1999. W3C Recommendation.
http://www.w3.org/TR/xslt/.

[7] J. Clark and S. DeRose. XML path language (XPath)
version 1.0, 1999. W3C Recommendation.
http://www.w3.org/TR/xpath20/.

[8] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy,
and D. Suciu. XML-QL: A query language for XML.
In WWW The Query Language Workshop (QL), 1998.

[9] D. Draper, P. Fankhauser, M. Fernandez,
A. Malhotra, Corporation, K. Rose, M. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 and XPath 2.0
formal semantics, 2005. W3C Working Draft.
http://www.w3.org/TR/xquery-semantics/.

[10] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 data model,
2005. W3C Working Draft.
http://www.w3.org/TR/xpath-datamodel/.

[11] P. Hloušek. XPath, XSLT, and XQuery: Formal
Approach. PhD thesis, Charels University, Prague,
2005. PhD thesis in progress. http://kocour.ms.mff.
cuni.cz/~hlousek/papers/XSXQcomp.pdf.

[12] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0
and XPath 2.0 functions and operators, 2005. W3C
Working Draft.
http://www.w3.org/TR/xpath-functions/.

